
David R Gonzales Page 1

M•CORE Architecture implements Real-Time Debug Port based on Nexus
Consortium Specification

 David Ruimy Gonzales
Senior Member of Technical Staff

Motorola M•CORETM Technology Center
Austin, Texas

david.gonzales@mot.com

Real-time embedded microcontrollers introduce new challenges to designers as they
become more highly integrated. Most embedded controllers execute code from internal
memory and provide little to no visibility of how programs flow. Prior techniques for
providing visibility of deeply pipelined instruction execution units have cost
performance hits as well as increased pin count. Because each silicon vendor may
choose different tradeoffs between performance and visibility, it is very difficult for tool
vendors to produce tools that offer consistent functionality across architectures.

A consortium of competing companies has developed a specification which describes a
standard for developing highly embedded microprocessor applications. Originally
started by five founding companies (Motorola, Siemens, Hitachi, Etas and Hewlett
Packard), there are now twenty four companies participating in this consortium.
Officially named the Nexus 5001 ForumTM, the project has been code named Nexus
and will be referred as such throughout this paper. The focus of this paper will be to
discuss the progress of the Nexus 5001 Forum and to describe the first implementation
of this proposed standard on an M•CORE micro-RISC architecture.

The objective of the consortium is to define a common set of microcontroller on-chip
debug features, protocols, pins and interfaces to external tools which may be used by
real-time embedded application developers. The consortium has been organized into
four committees which address business issues, the technical specification, software
and validation. The goal is to pass the specification to a governing body of the
Institute of Electrical and Electronic Engineers (IEEE) for institution as a standard. At
this time the Nexus Consortium has finalizing revision 1.0 of the specification and is
currently working on the IEEE standardization process.

One major objective of the consortium is to help development tool vendors more easily
provide a standard set of tools which may be used on a number of embedded
microcontrollers. In the spirit of reusability, it has been recognized that many
semiconductor vendors currently have debug ports and tool sets that sufficiently
address the static debug requirements of their architectures. Providing a cost effective
yet powerful migration path to a standard set of dynamic debug features is a goal of the
consortium. More than 70% of leading embedded microcontroller vendors have
dedicated circuits and pins which assist in new product development based on the
IEEE 1149.1 Joint Test Action Group (JTAG) 4 wire serial interface.

David R Gonzales Page 2

The JTAG pins and protocol help developers with static debug methodologies in a
master-slave mode but there is no means for the embedded microcontroller to initiate
real-time information transfers to a host computer. The Nexus standard addresses this
need with a scalable set of features whereby existing debug blocks may be used with
an extensible auxiliary port. The features associated with this new auxiliary port focus
on real-time transfer of information to and from the embedded microcontroller.

To address various levels of development needs the Nexus consortium has
categorized static and dynamic debug features according to class levels. These class
levels provide a means for implementing a scalable debug block which addresses
different market segment requirements. Also, it should be noted that when a product is
in development, it is desirable to have as many debug features available because of
time to market constraints. Once a device is put into production, it may not be
necessary to have all the development features and pins. A cost savings may be
realized by implementing a scalable debug port which meets only requirements needed
for specific stages of the product life cycle.

Figure 2 illustrates the 4 classes of compliance based on features in the proposed
global development standard. Each class level increases in complexity from the
classical static debug capabilities to complex dynamic debug and each higher

Embedded
Processor

Auxiliary Output

JTAG or Auxiliary Input

Debugger, Logic Analyzer,
Data Acquisition, Prototyping

Debug controller

JTAG Protocol or Packet-based Messaging
- Development Control and Status
- Read/Write Access to internal resources

Packet-Based Messaging

Program Trace
Data Write
Virtual Memory
Vendor-Defined

Processor independent
Supports multiple on-chip
processors

Figure 1 Illustration of JTAG/Nexus Development Interface

David R Gonzales Page 3

numbered class is inclusive of its respective lower numbered class. Another unit of
measure for classification is throughput performance of the debug port. Half duplex
operation is limited to Class 1 while all other classes require full duplex communication.

Each class level has increasing feature complexity. Class 1 encompasses vendor
defined static debug features that exist today and would not require redesign of the
respective debug blocks provided they implement the baseline set of features
described. Class 2 addresses fundamental real-time debug needs for program flow
behavior. Class 3 adds real-time data flow behavior and real-time read/write access
to programmer model memory. Class 4 addresses both static and dynamic debug
requirements and adds virtual memory access capabilities. It should be noted that
Class 4 is intended for new integrated circuit designs where the debug block is
implemented without legacy constraints.

Each class of compliance will require specific protocol packets to transfer information to
and from an external host computer. Also, there is a minimum number of Nexus debug
registers at each class level as well as pins to meet throughput requirements.

Figure 2 Nexus Features and Classes of Compliance

Program Trace Msgs

Data Trace Msgs

Memory Substitution

Port Replacement

Static Debug
r / w regs. & mem.
start/stop processor
hw / sw breakpoints

Class 1

Class 2

Class 3

Class 4

Watchpoint Msg

Read / Write Access

Ownership Trace Msg

David R Gonzales Page 4

APPLYING REAL-TIME FEATURES USING PUBLIC MESSAGES

A set of data packets, commonly referred to as Public Messages, has been defined for
efficient transfer of debug information between the embedded processor and a
development system. Public Messages consist of a transfer code or TCODE, source
processor identification number, and the data associated with the particular feature
being accomplished. A key requirement in the definition of the Public Messages is
efficiency, thus packets may be variable in length depending on the TCODE.

MONITORING PROGRAM FLOW

Three types of public messages have been designed to address program flow
behavior. For software architectures which incorporate a real-time operating system
the ownership message provides visibility of the process identification. This message
can also be used as a poor man’s data trace value. The objective of the Ownership
Trace Message is to give the most current value of the data bus when a process writes
to a special address. This address is called the User Base Address where comparators
on the Nexus block will trigger a capture of the data bus when this address is written to.

If you need to monitor real-time program flow, there are a group of Branch Trace
Messages that give visibility of the program counter’s change of flow. The key goal is
to efficiency of message information so only changes of program flow will be reported.
For more specific types of change of flow, there are messages that tell you if a direct
branch or an indirect branch was taken. The difference in the messages is that in a
direct change of flow, the only information needed is the number of instructions
executed since the last change of flow. This is initiated by a reference address which
is normally transmitted to establish where the program counter currently is. After that,
all references are made to that address until an indirect change of flow occurs.

If you need to evaluate accesses to data or program memory locations, the Watchpoint
Message does the job. This message triggers off existing hardware breakpoint logic a
silicon vendor may already have implemented. This is good reuse of existing on-chip
hardware so you don’t have to redesign a new block. The idea is to set a watchpoint
trigger where a signal as well as a message may be transmitted. The message tells
which of the watchpoint triggers occurred . This is especially valuable for debugging
variable writes. For example, if you have a global variable which is being modified by a
number of processes and you want to pinpoint which of those processes is accessing
that variable, the watchpoint message is the tool to use.

DATA TRACE MESSAGES

Data Trace messages provide a means for reporting real-time data accesses to
memory locations. This feature is quite useful for monitoring specific parameters
stored in data memory or values being accessed by a memory mapped peripheral port.

David R Gonzales Page 5

Data trace qualifiers include the access type, i.e., read/write or either, as well as a start
and stop address range. If the data address and access type qualifiers are met, a data
messages are generated and sent to the debug port.

Output bandwidth requirements for the debug port are reduced by only sending the
unique portion of the data address instead of the complete address. Consequently a
data trace message is reconstructed relative to each prior message using a
synchronization message as a reference address to begin with.

AUXILIARY ACCESS MESSAGES

Auxiliary Access Messages are used to read and write data to the auxiliary control and
status registers through the auxiliary port. It provide a means for transferring
information to and from the target system at relatively high speed. Configuration of
debug port registers is a classical use of the auxiliary access messages. For example,
to enable program trace messaging, a write to the auxiliary port development control
register (DCR) must be initiated using an auxiliary access message.

MEMORY SUBSTITUTION MESSAGES

Memory Substitution Messages are used to emulate a bus where opcodes and data
may be accessed through the auxiliary port. Currently the Nexus standard only
requires reading of data and/or fetching instructions via the auxiliary port. Discussion
is currently underway for definition of a full memory emulation capability for the next
specification release.

Memory Substitution Messages support run-time patching for portions of internal ROM
memory, with the patch provided via the auxiliary port. A classical example of this is to
begin reading instructions upon occurrence of a watchpoint qualifier. Once activated,
memory substitution accesses continue until an external development tool disables
memory substitution.

NEW M•CORE MICROCONTROLLERS SUPPORT NEXUS DEBUG FEATURES

The first processor to implement the GEPDIS standard will be an M*CORE M340
architecture with cache and memory management unit. M•CORE based
microcontrollers are widely being used in automotive and hand-held portable
applications at an astounding rate. A key element to its success is its low pin count
and low power consumption. Common to all M•CORE based microcontrollers is a
OnCE TM debug block for rapid new product development utilizing the JTAG protocol for
communication. This debug block contains a superset of the features required for
Nexus Class 1 compliance. It serves very well for static debug control and contains
limited observation of real-time program flow.

David R Gonzales Page 6

To enhance the M•CORE debug block with minimal impact to new designs, features for
Nexus Class 2 compliance and Read/Write Access for Class 3 were modeled.
Providing real-time program trace visibility and high speed DMA-like accesses to
memory mapped resources would add significant capability with low power
consumption penalty. Also, by using the OnCE controller to access 5 required Nexus
registers, only a small amount of additional controller logic was needed.

Figure 3 illustrates an implementation of a Nexus Class 2+ port utilizing the
JTAG/OnCE port for configuration of registers and for performing Read/Write Access
features. This approach is a hybrid of a 6 wire JTAG/OnCE port with a 6 wire Nexus
Auxiliary Port. All static debug features are conducted through the JTAG port including
real-time access to memory. Utilizing the JTAG port removed the requirement of
adding MDI and MSEI pins as well as a Nexus register decoder.

tdo

~rdy

sys_clk

mseo

mdo0

mdo1

snoop
logic

data
compress

state
machine

Bus
Interface

FIFO
Logic

I/O
Logic

DMA
Interface

JTAG / OnCE
Interface

tcode
generator

tms

tck

trst

OnCE
breakpoint logic

~wp

~sync_req

ctrl

nexus
regs.

DMA
regs.

OTM
compar

DMA
ctrl

tcode_cnt
~tcode_rdy
addr_data

~addr_rdy

addr

data

ctrl

ctrl

addr

M•CORE
Virtual
Bus

M•CORE
Physical

Bus

~evt_in

fifo_req
fifo_bus

~fifo_ack

dma data

~dma_req

~dma_ack

~enable

FIFO

FIFO
Logic

tms
 otm
 data

evto

dreq/~evti

otm

Figure 3 Nexus Compliant Class 2+ on M••CORE Based Architecture

David R Gonzales Page 7

The data path for Ownership Trace Messages, Program Trace Messages and
Watchpoint Messages occur through a dedicated Nexus block consisting of 3 sub-
blocks. The Bus Interface block snoops the core virtual bus so that program flow within
a cache unit could be monitored. The Nexus DCR register in the OnCE interface
enables messaging via the auxiliary port. Real-time program change of flow addresses
are stored in a FIFO block so that no messages are lost. The FIFO block in turn sends
message packets to the I/O block for transmission to the MDO and MSEO pins.

A group of automotive/industrial algorithms written in C from the EDN Embedded
Microprocessor Benchmark Consortium (EEMBC) were compiled using a Diab Data
Compiler and loaded onto a verilog behavioral model of an M•CORE based
architecture. The test bench instantiated the Nexus block so that it was evaluated for
throughput capability. Using the protocol defined by the Nexus consortium, it was
realized that coherent program flow could be accomplished using only 2 MDO pins, 1
MSEO pin and a 16 message deep FIFO.

The existing OnCE breakpoint logic was slightly modified to add watchpoint messaging
capability. This approach allowed for more sophisticated watchpoint capability as well
as removed the task of adding any new comparators to qualify watchpoint messages.

Real-time DMA accesses are performed using the JTAG/OnCE serial interface to the
Nexus Read/Write Access circuits. A Ready for Transfer pin (RDY) was added to
increase the transfer rate. Calculations show that accesses to the Read/Write Data
Register allow for a throughput of 1 megabyte per second on an M•CORE based
microcontroller operating at 40mhz system clock.

NEXUS PORT INTERFACE RECOMMENDATIONS

To assist in the standardization of development tool interfaces, a group of connectors
have been defined which accommodate scalable debug requirements. By providing
well defined connectors with fixed pin functions, tool developers as well as system
developers can reuse connectors from one processor design to another.
Considerations for low power, high speed interfaces with vendor specific pins have
been implemented in design of the connectors.

There are three connectors which may be used where each connector increases in pin
count as the development port increases with features. Figure 4 illustrates the
interface to a hybrid of an existing JTAG debug port and the high speed Auxiliary port.
The connector selected is the Nexus Standard Connector B as illustrated in the Table
1.

David R Gonzales Page 8

Figure 4 M•CORE M340 Debug Environment

Table 1 Nexus Standard Connector B

Host
Computer

Logic
Analyzer

Emulation
Controller

Ethernet

Embedded Target Application

Nexus
Connector B

jtag
port

in/out

Aux
port out

Short Distance Requirement Distance not an issue

Signal
Name

Signal
Name

Signal
Name

I/O Pin Pin I/O Signal
Name

1) JTAG Mode 2) Aux Mode 3) Mixed Mode
RESET RESET RESET IN 1 2 OUT VREF
EVTI* EVTI* EVTI* IN 3 4 - GND
TRST* RSTI TRST* IN 5 6 - GND
TMS RESERVED TMS IN 7 8 - GND

RESERVED MDI1* RESERVED IN 9 10 - GND
TDI MDI0 TDI IN 11 12 - GND
TCK MCKI TCK IN 13 14 - GND

RESERVED MSEI RESERVED IN 15 16 - GND
TDO MDO3* TDO OUT 17 18 - GND
RDY* MDO2* RDY* OUT 19 20 - GND

RESERVED MDO1* MDO1* OUT 21 22 - GND
RESERVED MDO0 MDO0 OUT 23 24 - GND
CLOCKOUT* MCKO MCKO OUT 25 26 - GND
RESERVED MSEO MSEO OUT 27 28 - GND

EVTO* EVTO* EVTO* OUT 29 30 I or
O

Vendor
Defined*

David R Gonzales Page 9

SUMMARY

Significant effort is underway throughout the electronics industry to improve tools and
methods for designing complex embedded systems. The Global Embedded Processor
Debug Interface Standard Consortium, code named Nexus, is a testament to this and
demonstrates that there is a dire need to standardize on a set of features, protocols,
pins, interfaces and tools for rapid development of real-time microcontroller based
products.

The consortium has visited many customers to educate the design community and
there is considerable enthusiasm from the feedback received. The main question
asked by customers is “When will this become available on the products I design
with?”. As with all industry standards, this will take time to be accepted but the
momentum, desire and energy is there to accomplish this effort.

Originally targeted to solve automotive engine controller design problems, the Nexus
consortium has extended the scope of this effort to encompass telecommunications,
industrial and portable hand-held products. The problems of real-time visibility to
deeply embedded microcontrollers is very similar if not identical to most product types.
Each will have special cases for solving specific design issues but the proposed global
standard has addressed this by allowing for vendor defined blocks for special features,
all addressed by a common protocol. The Nexus consortium frequently updates its
progress, solicits feedback and comments and places the most current specification on
internet web site www.nexus-standard.org.

M•CORE and OnCE are trademarks of Motorola

