
- 1 -

THE EVOLUTION OF POWERTRAIN MICROCONTROLLERS AND ITS IMPACT ON
DEVELOPMENT PROCESSES AND TOOLS

Gary Miller - Motorola
Kevin Hall - Hewlett Packard

Wayne Willis - Hewlett Packard
Wilfried Pless - Hewlett Packard

A B S T R A C T
As the new generation of RISC powertrain MCUs propagate through the automotive development cycle,
there will likely be more difficulty in debugging the ECU reliably and efficiently. Simply stated, there is
less support for the development process in the new high-performance single-chip RISC MCUs, which
could create critical and costly delays in the development cycle. Additionally, as powertrain MCUs continue
to evolve, superscalar or multiple-issue RISC implementations may be used as the central processor. With
the capability to issue multiple instructions in one clock cycle, this will only magnify the development
support problem. Thus it is essential to address this impending problem with a strategy that both
automotive and tools developers can agree. A strategy for development standards is presented in this paper,
and a new powertrain MCU development interface standard is proposed.

Evolution of Powertrain Microcontrollers
With the advent of the new 32-bit powertrain MCUs driven by high performance, integration and low cost,
there are unique challenges and trade-offs for both SW/HW development engineers and development tools
vendors. Ever increasing performance needs have led to the migration to RISC processors with on-chip
instruction and data caches, or high-speed RAM and Flash, to meet the high memory bandwidth
requirements of these architectures. High frequency one clock cycle instruction and data buses are on-chip to
support the memory bandwidth requirements to the internal memory system.

The challenges offered with the emergence of the new 32-bit MCUs are to provide the visibility needed for
logic analyzer, processor emulation and calibration systems, while not compromising performance and cost
saving features. The new MCUs solve this problem by providing trade-offs to the SW/HW development
engineers. Development engineers can choose from a number of options which provide an increasing level
of visibility, but with an impact of a reduction in performance and features. Consequently there is no
standard approach used since each is customized to the user's own preferences and needs. This presents a
compatibility challenge to development tools vendors.

Impact on SW/HW Development
The integration of high-speed RAM and flash onto the powertrain MCU creates a paradigm shift for
processor run control and logic analysis tools. With high-speed memory on-chip, memory substitution
techniques may no longer be truly transparent due to the significant latency increase in accessing off-chip
memory relative to on-chip memory. Thus comprehensive emulator techniques become problematic for
doing run control operations without impacting the customer's system e.g. reading and writing memory and
internal registers, and halting and running the microprocessor. Additionally, since accesses to internal
memory do not, by default, show up on external pins, there is insufficient visibility for logic analysis.

With integrated memory, there is an expectation by automotive developers that some applications will not
require the external address and data signals. For these applications, a cost-saving technique is to use these
pins for general-purpose I/O. Run control and logic analysis issues are further complicated by removal of
the external address and data signals altogether. As a result of the powertrain MCU evolution, tools vendors
must re-approach their solution technology in new and cooperative ways with the silicon vendors.

- 2 -

Impact on Calibration
ECU calibration comprises data acquisition of intermediate calculated variables, co-processing or analysis of
critical parametrics, and tuning of calibration constants either on a dynamometer or in-vehicle. In today’s
powertrain MCUs, where RAM and flash are easily accessible, the calibration process is essentially non-
obtrusive. But with high-speed on-chip memory and the removal of the external address and data signals
altogether, calibration issues may impact both the SW/HW developer and the calibrator. Depending upon
the method used for acquiring variables and updating constants, there can be a range of impacts on MCU
overhead. The developer must trade-off options which provide an increasing level of acquisition and tuning
capability, but with an impact of a reduction in performance and features.

- 3 -

DEVELOPMENT NEEDS FOR POWERTRAIN APPLICATIONS
Figure 1 illustrates at a high level view the automotive development process steps for a mechatronic-based
system. This diagram identifies the 3 major sub-systems being developed and the associated steps
encountered in each sub-system’s development. The diagram is also useful in demonstrating the
expansiveness and complexity of the automotive development process, and how different skills and
organizations are involved. Requirements are initially extracted from the vehicle level to powertrain needs,
then to electronic hardware, and finally to module software. As the design sub-systems come together into
prototypes, they are then qualified and calibrated to verify conformance with the initial requirements.

Algorithm
Dev Emulation Software

Development
Regression

Testing

Design Simulate Prototype
Assembly

Design
Verification

System
Spec

Model/
 Simulate

Develop
Comp.
Spec.

Build
Prototype

Sys Cal &
Perform.

Verification

Release
to Mfg

Mechatronic
System

Design , Qualification & Calibration

Electronic
Hardware

Module
Software

Vehicle
 Test & Cal

Car Program
Requirements

A. Decompose the design
into the needed subsystems
and document the requirements

B. Construct prototypes,
verify design capability against
requirements and calibrate

A B

Figure 1: Mechatronic System Development Lifecycle
Figure 2 illustrates the timeline and steps associated with a typical powertrain program. Across the program
timeline the design content evolves to become more complete as the developers and tools change.

- 4 -

 S/W revisions
implemented

BID
 R

eq
ue

st

Pro
gra

m
 A

war
ded

A. P
ro

to
's

(~
 10

 u
nits

)

B. P
ro

to
's

(~
50

-1
00

 u
nits

)

C. P
ro

to
's

(~
 30

0 u
nits

)

Pro
duct

io
n R

ele
as

e

Annual
Updat

e

(6 - 9)
months

(12 - 18)
months

(20 - 30)
months

(30 - 40)
monthsStart

(1 - 3)
 months

S\W can
run engine

All S/W
features
implemented

Additional
S/W features
Added

Semiconductor
Architecture
Research &
Analysis

Vehicle
Launch

Architect
Designer
(H/W, S\W) Calibrator

Tools Users across an ECU
 program will transition from:

1. Architects
2. Hardware Designers
3. Software Designers
4. Calibrators
5. Mfg & Service

Software
Development
Test Bench

Dyno Cell
Performance
Test & Edit

Track
Performance
Test & Edit

Figure 2: Program Timeline

Basic Development Needs
Automotive developers have certain needs of their development tools in order to accomplish their jobs. For
logic analysis the basic needs are:
1. To access program trace information with acceptable impact to the system under test. The developer

needs to be able to interrogate and correlate program flow to real world interactions
2. To retrieve information on how data flows through the system with acceptable impact to the system

under test, and to understand what system resource(s) are creating and accessing data
3. To assess whether system SW is meeting the required performance with acceptable impact to the

system under test
For run control the basic needs are:
1. To query and modify all register and memory locations
2. To support breakpoint features in debuggers, either as HW or SW breakpoints depending on the

architecture
Note that the capability for run control, logic analysis and memory overlay or substitution comprise what
is traditionally known as processor or in-circuit emulation.
For calibration the basic needs are:
1. To be able to positionally (crank shaft synchronous) acquire data relating to calibration factors as they

are being used or modified during high speed transient events with acceptable impact to the system
under test.

2. To acquire time synchronous data relating to calibration factors with minimal impact to the system
under test

3. To coherently modify table(s) of calibration data in real time while the ECU is running the vehicle
For algorithm development the basic need is to rapidly prototype new ECU algorithms and perform
conformance testing in a vehicle e.g. new fuel strategy such as direct injection. The new algorithm is
typically implemented in a special emulation module which is connected to the ECU and acts as a co-
processor. Control strategy SW is modified to make a procedure call to the special emulation module at the
appropriate time, and after waiting for result calculations, the SW proceeds with normal control strategy.

- 5 -

Table 1 describes the ECU development phases and further demarcates the development needs and tools
which are used in each phase.

HW Development
• Bring up board for first time
• Debug HW interfaces (e.g. RAM, serial, A/D, etc.)
• Using bench code stimulate interface to test timing, noise margins, etc.
• Logic analyzer central to development effort, including timing, scope and stimulus functions
• Prototype module developed only for bench environment to be used with bench-top engine

emulator
• May implement low-level drivers interfacing to HW

SW Development (may be provided outside company)
• Starts with requirement specifications developed by separate algorithm development team (may

even be provided by an OEM)
• Majority of work is accomplished on bench-top with prototype ECU and bench-top engine

emulator
• More focus on BDM debuggers and less on logic analyzers and parametrics
• May start development with high level HW modules or VHDL simulators
• Start using calibration tools as a high level view of how SW is responding to stimulus (to view

calibration parameter usage)
• Some routines may be debugged on dynamometer
• Initial calibration constants supplied from historical information

HW/SW Integration (measurement intrusion becomes a more significant factor)
• Resolve problems/bugs related to inadequate specifications
• Start to measure performance and other ECU parametrics
• Start to exercise asynchronous events and resolve race conditions
• Test corner cases in real time
• May use PRUs or PSEs to aid visibility (depending upon development philosophy)
• Need higher dynamic range of abstraction from tools, from capturing HW events, correlating

events to program/data flow, to statistical analysis for SW routines

- 6 -

Calibration
• Tuning 5 to 15 thousand constants which impact drivability
• 3 types of calibration

• Initial constants supplied in SW development phase
• Dynamometer calibration for dynamic tuning of engine
• In-vehicle for final calibration

Dynamometer
• Approximately 30-50% of constants are calibrated with dynamometer (i.e. ignition control –

misfire, knock, torque, etc.)
• May use PRUs to aid visibility (depending upon development philosophy)
• Interface should be non-intrusive and meet synchronized data bandwidth requirements (i.e. 40

bytes/1msec and more in future). Block transferred out each synchronized event and transferred in
periodically. ASAP standard exists for dynamometer calibration.

• Common technique for updating constants is external to MCU memory emulation (position
synchronized bank switched).

In-Vehicle
• Approximately 50-70% of constants are determined in in-vehicle calibration (i.e. cold/hot start,

altitude compensation, etc.)
• Performed with production-intent module
• Interface may be intrusive and should meet time and vehicle correlated data bandwidth requirements

(i.e. 40 bytes/10 msec and more in future). Block transferred in/out periodically
• Common technique for updating constants is external to MCU memory emulation. Serial interface

also used.

Table 1: Electronic Development Phases and Development Needs and Tools
It should be noted that there are different philosophies with regard to ECU development for powertrain
MCUs comprising fast on-chip instruction and data memories. One approach is to provide more MCU
visibility to enhance the development process by using a Port Replacement Units (PRU) in module
versions up through in-vehicle calibration. This adds risk since the PRU may be removed in the production
module, which may impact ECU parametrics. Another approach is to transition to the production-intent
module as early as possible in the development process. This approach provides lower risk but with
potentially more difficulty during the development process. There are also varying approaches in between
these two which trade-off the development process and risk.

Calibration Performed with External to MCU Memory Emulation
The predominant technique used today to perform calibration on the dynamometer and in-vehicle is with
external to MCU memory emulation. A popular solution is Hewlett Packard’s Parallel Interface Adapter
(PIA) as shown in Figure 3. On the left side of Figure 3 you see the relevant pieces of the ECU, and on the
right side the main building blocks of the PIA are shown.

When calibration is performed visibility is needed of intermediate calculated values (calibration variables)
such as calculated ignition time, actual RPM, sensor temperatures, knock sensor value, etc., Many of these
variables are calculated every cycle of each cylinder. The PIA provides instrumentation access to these
variables through data acquisition hardware. By snooping the MCU’s external bus for writes to calibration
variables in the ECU SRAM, data acquisition hardware provides an image of the calibration variables for
instrumentation access.

After parametric analysis is performed the two RAM banks of the PIA allow instrumentation to update
calibration constants for ECU access. Chip select logic on the ECU is used to overlay flash memory
containing calibration constants with new constants in RAM bank 0/1. So instead of reading calibration

- 7 -

constants from the flash, the MCU reads them from one of the RAM banks. Which one of the banks
calibration constants are read from is determined by a switch triggered by engine TDC occurrence. The
position synchronous switch allows for coherent changes to calibration constants.

ECU MCU
w/SRAM

 Flash

 SRAM

CS
Logic

Calibration
Constants
& Code

Calibration
Variables
Only

ECU

Data
Acq

RAM 1

RAM 0

PIA

RAM Bank
Overlay

RAM Banks
for Calibration
Constants

Data Acquisition
of Calibration
Variables

Access from
Instrumentation

Engine
Synchronous

Switch

Connector

Figure 3: Calibration Example using a PIA

- 8 -

THE EVOLUTION OF POWERTRAIN MCUs

Since the first application of semiconductors in engine control the powertrain MCU has continuously
evolved. As requirements have exploded due to more intensive control strategies and environmental
restrictions, the powertrain MCU has evolved into a very high-performance and cost-effective solution.
This evolution has been good for automotive manufacturers and their customers, but a result has been the
creation of a new paradigm which will negatively impact development processes and tools. In the remainder
of this paper the impact on development processes and tools will be investigated. Additionally, options for
new powertrain MCUs will be discussed to simplify development processes and tools.

Today’s ECUs
Powertrain MCUs used today are predominantly Complex Instruction Set Computers (CISC). An example
architecture is Motorola’s CPU32-based MCU as shown in Figure 4. CISC MCUs do not require a high
bandwidth instruction path since typical instructions require multiple clocks to execute. Furthermore a
unified bus architecture is sufficient in many applications. Thus delays for off-chip accesses and visibility
cycles do not significantly impact overall MCU performance.

EBI

CPU32

Internal Bus (multi-clock)

ROMRAMPeriph

Periph

Ext Bus (multi-clock)
(1 clk delay)

Figure 4: Motorola’s CPU32-Based MCU
Figure 5 shows typical development tool usage for this generation of MCUs. Full program/data flow
visibility is readily available with no intrusion, although a PRU may be required for single-chip MCUs.
Calibration may be accomplished with external to MCU memory emulation with little or no intrusion. SW
development is supported through the Background Debug port.

- 9 -

bus

busbusbus

bus

bus

bus

bus

Wk Stn

Compilers
Linkers
Config Mgmt

Disk Drive
& Network
Servers

Printer

bu
sb

us
bu

s

bu
s

bu
s

bu
s

bu
s

bu
s

HIL Engine
Emulator Portable

Cal. System

Logic Analyzer

Processor
Emulator

Scope

Emulate

View

GP
Instruments

ECU Verification, DeBug & Calibration

ECU S/W Development

S/W Library &
Network Services

PC Stn

uP

Engine Control
Module

Memory
Emulation

BDM
Access

Main ECU
I/O Access

CPU
Memory
Bus
Access

External Memory Emulation
allows for high-speed, non-
obtrusive access and mod-
ification to all ECU parameters.
Banked emulation allows for
coherent access.

16500B

LOGIC

ANALYSIS

SYSTEM

STBY ON

POWER

TOUCH

SCREE

N

Figure 5: ECU Development Bench for Today’s MCUs
Some recent CISC implementations as shown in figure 6 have evolved to include a high bandwidth data
path to improve performance. This evolution signals a trend in engine control MCUs towards more
performance with the addition of embedded, single clock buses. It also represents a paradigm shift in the
development model since there is less external bus visibility of internal data or instruction flow
information, or a reduction in performance if flow information is shown in real time on the external bus. A
reduction in performance results when transactions on the fast embedded bus are prohibited and re-directed to
the internal bus for the purpose of increased visibility on external bus pins. This increases bus traffic on the
internal/external bus and slows performance. An alternate approach is to pin out the embedded bus for data
visibility.

- 10 -

CPU32XRAM

Private One Clock Bus

EBIInternal Bus (multi-clock)

ROMPeriphPeriph

Ext Bus (multi-clock)
(1 clk delay)

Figure 6: Motorola’s CPU32x-Based MCUs

Migration to RISC
Ever increasing performance needs for automotive engine control applications have precipitated a migration
to Reduced Instruction Set Computers (RISC). RISC architectures by nature require high bandwidth data
and instruction paths to ensure high performance, with most instructions being executed in one clock cycle.
 With the advent of RISC architectures into engine control there are performance, features and development
trade-offs to understand and exercise wisely.

RISC processors achieve high performance by utilizing multiple independent execution units which may be
executing instructions in parallel. A scoreboarding technique may be used to determine instruction data
dependencies. Instructions may even complete out of sequence if there are no data dependencies. RISC
implementations with a Harvard architecture comprise separate instruction and data buses. Autonomous
instruction fetch and data load/store execution units are employed to maintain the high instruction/data
bandwidth. The result is that multiple instructions may complete or retire on a single clock cycle.
Additionally instruction and data buses require high-bandwidth (1 clock cycle access), which may result in a
performance or visibility "bottle neck" through the external bus interface. Thus development support for
program trace is more complicated since not all program/data flow is typically echoed on the external bus.

To meet instruction fetch demands of RISC architectures an on-chip instruction cache (1 clock access) is
typically utilized, with burst fetches to the off-chip instruction memory. And to meet data access demands
of RISC architectures fast on-chip RAM (1 clock access) is typically utilized. Figure 7 illustrates an
example of an internal Harvard/external unified architecture as implemented on Motorola's MPC509
PowerPC MCU. This architecture allows for fast on-chip access to data/instructions to achieve high
performance.

For this and similar MCUs automotive system developers are required to make development trade-offs
which impact performance. Enabling instruction show cycles (show all cache hits, show only changes of
flow, or show only indirect changes of flow) provide visibility of cache accesses needed for program trace,
but at the cost of more bus traffic and lower performance. Processor state information is provided externally
each clock to indicate if the current instruction is sequential, branch direct taken, branch indirect taken,
exception taken, or branch not taken. Information is also provided on how many instructions complete each
clock. With this state information and visibility of branch addresses, referred to as branch trace messaging,
the program flow can be reconstructed by development tools in a post-analysis manner.

- 11 -

Enabling data show cycles (show all internal accesses or show only internal writes) provide data flow
information but with lower performance. It should be noted that if show all is enabled for both data and
instructions then the MPC509 operates in the performance class of its CISC predecessors.

Peripheral Bus (multi-clock)

Other Peripherals as needed

Data Bus (1 clock)
PowerPC

CACHE

 RAM

EBI Ext Bus (multi-clock)

 Bus I/F

Private One-Clock Bus

Inst Bus

(1 clk delay)

Figure 7: Motorola’s MPC509 PowerPC MCU
With fast on-chip data memory developers also trade-off visibility needed for data acquisition of calibration
variables against performance. Visibility is gained by data write showcycles, also called data write
messaging, or data "echo" cycles on the external bus. External data write showcycles reduce external bus
bandwidth available and typically needed for instruction fetches, and can also slow the internal data bus.

New Trade-offs for Tomorrow's ECUs
More recently fast instruction memories have also been integrated on RISC MCUs for the improved
performance/integration/cost of a single-chip solution. Refer to figure 8 for an example of Motorola’s
MPC555 PowerPC architecture. The challenges offered with the emergence of the new 32-bit single-chip
RISC MCUs comprise providing the visibility needed for calibration, logic analyzer and processor
emulation while not compromising performance and cost saving features. The MPC555 also addresses this
problem by providing trade-offs to the development engineers. Development engineers can choose from a
number of options which provide an increasing level of visibility, but with a reduction in performance and
features.

- 12 -

Peripheral Bus (multi-clock)

Other Peripherals

Data Bus
(1 clock)

PowerPC

Bus I/F

EBI Ext Bus (multi-clock)
Inst/Data Bus (1 clock)

Bus I/F

 Flash Flash

 Bus I/F RAM

Serial Link

Figure 8: Motorola’s MPC555 PowerPC MCU
To provide visibility for logic analyzer support the MPC555 device should be configured in one of the
expanded modes offered. The Addr/Data/GPIO pins can be configured as GPIO (single-chip mode), as Addr
and GPIO (allows instruction showcycles for program trace) or as Addr and Data (for complete visibility).
An external PRU can be designed to provide needed GPIO if an expanded mode is used. Although these
options provide a range of solutions which may meet needed development and functional capabilities,
expanded mode options may only be acceptable to some powertrain developers for preliminary development
stages. Additionally, there would be a varying degree of performance degradation, depending upon which
expanded mode configuration and showcycle configuration is selected. Showcycle options and processor
state visibility information offered on the MPC555 are similar to the MPC509.

To perform calibration several options are available on the MPC555, depending upon if the device is
configured in an expanded mode or in single chip mode. Calibration performed with the device in an
expanded mode configuration may be accomplished through external to MCU memory emulation. This
can be accomplished with an ECU configuration similar to Figure 3, with the addition of a PRU and the
exception that on-board flash would not be required. By using a feature of the MPC555 to overlay data
accesses within a programmable region in the internal flash, these accesses can be mapped directly to an
external RAM bank. There may only be minimal performance impact for accessing constants externally as
the on-board flash is optimized for fast instruction fetches, but requires multiple clocks for data accesses.

Calibration performed with the device in the single-chip configuration may be accomplished through an on-
chip serial link such as a CAN link. Due to data acquisition requirements for calibration on a dynamometer
it may only be practical to perform in-vehicle calibration through the serial port. Even so, the processor
overhead required for managing the data transfer through the serial link should be considered when evaluating
this option, as it may be too intrusive. The CAN link on the device has 16 transmit/receive message
buffers of 8 bytes, for a total of 128 transmit/receive bytes which can be queued. This feature allows for a
minimal number of interrupts to support data acquisition and calibration.

- 13 -

Table 2 summarizes some of the development trade-offs for the MPC555 and characterizes performance
impact and related issues.

Addr/Data/
GPIO Usage

Performance Impact Processor
State Info Comments

Program Flow Addr & GPIO Performance impact
estimated in the 0% to

5% range (code
dependent) for branch

trace messaging

Latched each
clock by tools

Post processing required by tools;
PRU may be required;
Performance impact may not be
acceptable to some developers

Program and
Data Flow

Addr & Data Performance impact
estimated to be larger

than 5% (code dependent)
 for branch trace and data

write messaging

Latched each
clock by tools

Post processing required by tools;
PRU may be required;
Performance impact may not be
acceptable to some developers

Calibration
Option #1 -
Parallel Interface
and external to
MCU memory
emulation

Addr & Data Minimal performance
impact for accessing

RAM banks with 0 wait
state external memory;
additional performance
impact dependent on

number of cal variables
being acquired

N/A Dynamometer or in-vehicle
calibration; PRU may be required;
Performance impact may not be
acceptable to some developers

Calibration
Option #2 -
Serial Interface
managed by
CPU

GPIO Performance impact
primarily dependent on

interrupt rate required for
instrumentation

N/A In-vehicle calibration;
Performance impact may not be
acceptable to some developers;
Requires cal constant pointers in
RAM to re-map desired constants
from Flash to RAM

Table 2: Development Trade-offs for the MPC555
Figure 9 shows possible development tool usage for the MPC555. In comparison to the current
development tools use model, as shown in Figure 5, full program/data flow visibility will result in
intrusion. The development tools will be more complicated since post analysis is necessary. Calibration
may be accomplished either by external to MCU memory emulation, or possibly via a serial link. SW
development is supported through a Background Debug port, although port definition has evolved.

- 14 -

Wk Stn

Compilers
Linkers
Config Mgmt

Disk Drive
& Network
Servers

Printer

bu
s

bu
s

bu
s

bu
s

bu
s

bu
s

bu
s

bu
s

HIL Engine
Emulator Portable

Cal. System

Logic Analyzer

Processor
Emulator

Scope

Emulate

View

GP
Instruments

ECU Verification, DeBug & Calibration

ECU S/W Development

S/W Library &
Network Services

PC Stn

uP

Engine Control
Module

Memory
Emulation

BDM
Access

Main ECU
I/O Access

CPU
Memory
Bus
Access

Serial Bus
 (CAN)

Serial Cal.
Controller

Port
Replacement
Unit

PRU

bus busbus bus

busbus

bus bus

16500BLOGIC ANALYSIS

SYSTEM

STBY ON

POWER

TOUCH SCREEN

Figure 8: ECU Development Bench for the MPC555

- 15 -

ADDRESSING DEVELOPMENT PROBLEMS FOR TOMORROW’S
POWERTRAIN MCUs

As the new generation of RISC powertrain MCUs propagate through the automotive development cycle
(which can take several years) there will likely be more complexity and difficulty in debugging the ECU
reliably and efficiently. Simply stated, there is less support for the development process in the new high-
performance single-chip RISC MCUs, which could create critical and costly delays in the development
cycle. Additionally, as powertrain MCUs continue to evolve, superscalar or multiple-issue RISC
implementations may be used as the central processor. With the capability to issue multiple instructions in
one clock cycle, this will only magnify the development support problem. Thus it is essential to address
this impending problem with a strategy with which both automotive and tools developers can agree.

Recommendations for Tomorrow's ECUs
A Real-time Embedded Application Development Interface (READI) standard has been proposed by
Motorola. The Nexus Consortium, comprising world-wide leaders in semiconductor ICs and development
tools, has adopted and enhanced the READI standard. Key milestones regarding the Nexus standard are

• Alpha release on 16 June 98
• Beta release on 16 October 98
• Nexus Consortium announcement at Convergence ‘98 on 19-21 October 98
• 1.0 release on 18 December 98

The proposed standard can be down-loaded from the website www.nexus-standard.org. The intent for the
standard is to improve the way embedded systems (MCUs, MPUs and DSPs) are developed. Automotive-
specific needs, such as calibration, are covered in the development interface standard.

The proposed standard is JTAG-based (IEEE 1149.1 standard). It defines a standard development use for the 5
JTAG pins, which are already available on the majority of embedded processors. JTAG pins are used to
access standardized development registers and for read/write access to internal memory-mapped resources
during runtime. The standard also defines an auxiliary port (2 or more pins), which provides for high-speed,
packet-based messaging. The auxiliary port is needed for run-time visibility and controllability such as
program trace, data trace, memory substitution, read/write access to internal memory-mapped, and other
high-bandwidth information transfers (vendor defined).

Table 3 summarizes the major problems which were discussed in this paper. It also lists the
recommendations for solving these major problems using the Nexus standard.

- 16 -

 Problem/Task Method(s) used for
 Today’s MCUs

 Method(s) used for
 RISC MCUs

 Nexus Standard

Use Model: HW Dev.
and HW/SW Int.
High performance on-chip
instruction cache or flash
eliminates visibility needed
for program trace. Need
program trace visibility with
acceptable impact to the
system under test.

CPU32-based MCUs use
configurable showcycles to
provide visibility of fetches
to the outside world with no
performance impact.
Requires that external address
and data pins are available.

Customer may trade off
performance for
visibility. As more access
types are configured for
showcycles performance
can degrade accordingly
for some architectures.
Branch trace messaging is
the minimal
configuration needed for
visibility and may result
in a performance impact
in the 0% to 5% range
(code dependent). Requires
that external address pins
are available.

Defines an auxiliary port for
outputting branch trace and data
write messaging at high
speeds. The port is capable of
meeting bandwidth
requirements to support
messaging with no
performance impact. Bandwidth
requirements can be met via an
expandable port size or clock
rate. Implementations may
include a message queue, which
eliminates the need to stall the
processor for most scenarios.

Use Model: HW/SW
Int .
High performance on-chip
SRAM eliminates visibility
needed for data trace. There
are 2 types of data visibility
needed: (1) Which process
wrote which data parameter
and what new value was
written? (2) For a chosen
data parameter which process
accessed it?
Need data trace visibility
with acceptable impact to
the system under test.

CPU32-based MCUs use
configurable showcycles to
provide visibility of data
accesses to the outside world
with no performance impact.
Requires that external address
and data pins are available.

Customer may trade off
performance for
visibility. Branch trace
and data write messaging
is the minimal
configuration needed for
data write visibility (#1)
and may result in a
performance impact of
larger than 5% (code
dependent). Branch trace
messaging and
watchpoints are the
minimal configuration for
data read visibility (#2)
and may result in a
performance impact in the
0-5% range (code dep.).

See box above. Watchpoint are
also supported.

Use Model: Cal
Data acquisition in ECU
(time and position
synchronous) while running
an engine or vehicle. Need
access to calibration
variables with acceptable
impact to the system under
calibration.
Today’s bandwidth needs are
> 40 bytes/1 msec for
position synchronous and >
40 bytes/10 msec for time
synchronous.

External to MCU memory
emulation allows for direct
access to calibration
constants with no
performance impact.
Requires that external address
and data pins are available.
Time synchronous data may
also be accessed by a serial
link.

Can use similar method
as used with today’s
MCUs, but there is a
performance impact
dependent on number of
calibration variables
(stored in on-chip fast
RAM) being acquired .
Requires that external
address and data pins are
available.

Auxiliary port may provide
data acquisition using data
write messaging (transparent to
SW) or data messaging (SW
writes to designated address(es),
which are queued and
transferred).

- 17 -

Use Model: Cal
Updating calibration
constants coherently in ECU
while running an engine or
vehicle. Need to switch
between at least two maps
or banks at a position
synchronized event. Need
calibration accessibility with
acceptable impact to the
system under calibration.

External to MCU memory
emulation allows for
instrumentation access to
calibration constants with
low (or not any) performance
impact. Position
synchronized bank switching
hardware as implemented on
a PIA is used for control of
emulation memory banks.
Requires that external address
and data pins are available.

Can use similar method
as used with today’s
MCUs.

Provides access via JTAG or
auxiliary port to internal
calibration tuning block.
Allows for capability of a
single-chip solution (no PIA
required).

Use Model: HW Dev.
and HW/SW Int.
Muxing debug pins with
GPIO can make logic
analysis tools exhibit
unpredictable behaviors that
developers consider
undesirable

Not applicable. No work-around.
Customer must put up
with these anomalies.

Early tool vendor involvement
will help customer understand
potential problems which may
be introduced in the
development process by such
muxing schemes. Auxiliary
port is reset configurable.

Use Model: HW Dev.,
HW/SW Int. & Cal.
MCU vendors do not
support standard
development
interface/methodology across
MCU architectures

Powertrain MCU vendors do not always provide the same
development interface and features across their product
line. This makes it difficult for automotive developers to
upgrade since it requires an investment in capital and
engineering.

An industry-wide development
standard would developers to
leverage existing development
tools and methodologies

