THE EVOLUTION OF POWERTRAIN MICROCONTROLLERS AND ITS IMPACT ON
DEVELOPMENT PROCESSES AND TOOLS

Gary Miller - Motorola
Kevin Hall - Hewlett Packard
Wayne Willis - Hewlett Packard
Wilfried Pless - Hewlett Packard

ABSTRACT

Asthe new generation of RISC powertrain MCUs propagate through the automotive development cycle,
there will likely be more difficulty in debugging the ECU reliably and efficiently. Simply stated, thereis
less support for the development process in the new high-performance single-chip RISC MCUs, which
could create critical and costly delaysin the devel opment cycle. Additionally, as powertrain MCUs continue
to evolve, superscalar or multiple-issue RISC implementations may be used as the central processor. With
the capability to issue multiple instructions in one clock cycle, this will only magnify the development
support problem. Thusit is essential to address this impending problem with a strategy that both
automotive and tools devel opers can agree. A strategy for development standards is presented in this paper,
and anew powertrain MCU development interface standard is proposed.

Evolution of Powertrain Microcontrollers

With the advent of the new 32-bit powertrain MCUs driven by high performance, integration and low cost,
there are unique challenges and trade-offs for both SW/HW development engineers and development tools
vendors. Ever increasing performance needs have led to the migration to RISC processors with on-chip
instruction and data caches, or high-speed RAM and Flash, to meet the high memory bandwidth
requirements of these architectures. High frequency one clock cycleinstruction and data buses are on-chip to
support the memory bandwidth requirements to the internal memory system.

The challenges offered with the emergence of the new 32-bit MCUs are to provide the visibility needed for
logic analyzer, processor emulation and calibration systems, while not compromising performance and cost
saving features. The new MCUs solve this problem by providing trade-offs to the SW/HW development
engineers. Development engineers can choose from a number of options which provide an increasing level
of visibility, but with an impact of a reduction in performance and features. Consequently there is no
standard approach used since each is customized to the user's own preferences and needs. This presents a
compatibility challenge to development tools vendors.

Impact on SW/HW Development

The integration of high-speed RAM and flash onto the powertrain MCU creates a paradigm shift for
processor run control and logic analysis tools. With high-speed memory on-chip, memory substitution
techniques may no longer be truly transparent due to the significant latency increase in accessing off-chip
memory relative to on-chip memory. Thus comprehensive emulator techniques become problematic for
doing run control operations without impacting the customer's system e.g. reading and writing memory and
internal registers, and halting and running the microprocessor. Additionally, since accesses to internal
memory do not, by default, show up on external pins, there is insufficient visibility for logic analysis.

With integrated memory, there is an expectation by automotive developers that some applications will not
require the external address and data signals. For these applications, a cost-saving technique is to use these
pins for general-purpose 1/0. Run control and logic analysis issues are further complicated by removal of
the external address and data signals altogether. Asaresult of the powertrain MCU evolution, tools vendors
must re-approach their solution technology in new and cooperative ways with the silicon vendors.

-1 -

Impact on Calibration

ECU calibration comprises data acquisition of intermediate calculated variables, co-processing or anaysis of
critical parametrics, and tuning of calibration constants either on a dynamometer or in-vehicle. In today’s
powertrain MCUs, where RAM and flash are easily accessible, the calibration process is essentially non-
obtrusive. But with high-speed on-chip memory and the removal of the external address and data signals
altogether, calibration issues may impact both the SW/HW developer and the calibrator. Depending upon
the method used for acquiring variables and updating constants, there can be a range of impacts on MCU
overhead. The developer must trade-off options which provide an increasing level of acquisition and tuning
capability, but with an impact of areduction in performance and features.

DEVELOPMENT NEEDS FOR POWERTRAIN APPLICATIONS

Figure 1l illustrates at a high level view the automotive development process steps for a mechatronic-based
system. This diagram identifies the 3 major sub-systems being developed and the associated steps
encountered in each sub-system’s development. The diagram is also useful in demonstrating the
expansiveness and complexity of the automotive development process, and how different skills and
organizations are involved. Requirements are initially extracted from the vehicle level to powertrain needs,
then to electronic hardware, and finally to module software. As the design sub-systems come together into
prototypes, they are then qualified and calibrated to verify conformance with theinitial requirements.

Design , Qualification & Calibration a
Vehicl
Gapogem ® e

System Model/ %egrilsp Build SPVS fCaI & Release
S Simulat Protot erform.
pec imutate Spec. rototype Verification to Mfg

A. Decompose the design
] into the needed subsystems

) and document the requirements
PrototypeH Design]
\Y n

Mechatronic
System

Design Simulate

Assembly [“Verification| B construct prototypes,
verify design capability against
requirements and calibrate

Electronic
Hardware

Ep’] Algorithm Emulation Software Regression
4 ; Dev evelopmen Testing

Module
Software |

Figure 1. Mechatronic System Development Lifecycle

Figure 2 illustrates the timeline and steps associated with atypical powertrain program. Across the program
timeline the design content evolves to become more complete as the devel opers and tools change.

Ao & S
Research & S \§\\ S S &Q’
Analysis S N P & 2
& S o & &
> W i }o) ’ <& S
& W \C [\ \C < R
K Q@ % N 32 c}\o NS
S & SOAdditional Sl sw S &
Q;\O Q\O Q" S\W can QY /W features O‘Q features Q@ Vehicle (&
run engine 0 Added implemented Launch
1
1 : | : I :
i (1 2] 1(£0 - 30) |(30 40) SIW revisions
Star 1 months .mon s onths imonths implemented
Architect '

L
(H/W.\3IW) Ca// rator
Tools Users across an ECU
program will transition from:
1 Architects

2. Hardware Designers

3. Software Designers Software Dyno Cell Track

4. Calibrators Development Performance Performance
5. Mfg & Service Test Bench Test & Edit Test & Edit

Figure 2: Program Timeline

Basic Development Needs

Automotive devel opers have certain needs of their development toolsin order to accomplish their jobs. For

logic analysis the basic needs are:

1. Toaccessprogram trace information with acceptable impact to the system under test. The developer
needs to be able to interrogate and correlate program flow to real world interactions

2. Toretrieve information on how data flows through the system with acceptable impact to the system
under test, and to understand what system resource(s) are creating and accessing data

3. To assess whether system SW is meeting the required performance with acceptable impact to the
system under test

For run control the basic needs are:

1. Toquery and modify all register and memory locations

2. To support breakpoint features in debuggers, either as HW or SW breakpoints depending on the
architecture

Note that the capability for run control, logic analysis and memory overlay or substitution comprise what

istraditionally known as processor or in-circuit emulation.

For calibration the basic needs are:

1. Tobeableto positionally (crank shaft synchronous) acquire datarelating to calibration factors as they
are being used or modified during high speed transient events with acceptable impact to the system
under test.

2. To acquire time synchronous data relating to calibration factors with minimal impact to the system
under test

3. To coherently modify table(s) of calibration datain real time while the ECU is running the vehicle

For algorithm development the basic need is to rapidly prototype new ECU algorithms and perform

conformance testing in a vehicle e.g. new fuel strategy such as direct injection. The new algorithm is

typically implemented in a special emulation module which is connected to the ECU and acts as a co-
processor. Control strategy SW is modified to make a procedure call to the special emulation module at the
appropriate time, and after waiting for result calculations, the SW proceeds with normal control strategy.

-4 -

Table 1 describes the ECU development phases and further demarcates the development needs and tools
which are used in each phase.

HW Development

Bring up board for first time

Debug HW interfaces (e.g. RAM, serial, A/D, etc.)

Using bench code stimulate interface to test timing, noise margins, etc.

Logic analyzer central to development effort, including timing, scope and stimulus functions
Prototype module developed only for bench environment to be used with bench-top engine
emulator

May implement low-level driversinterfacing to HW

SW Development (may be provided outside company)

Starts with requirement specifications developed by separate algorithm development team (may
even be provided by an OEM)

Majority of work is accomplished on bench-top with prototype ECU and bench-top engine
emulator

More focus on BDM debuggers and less on logic analyzers and parametrics

May start development with high level HW modules or VHDL simulators

Start using calibration tools as a high level view of how SW is responding to stimulus (to view
calibration parameter usage)

Some routines may be debugged on dynamometer

Initial calibration constants supplied from historical information

HW/SW Integration (measur ement intrusion becomes a mor e significant factor)

Resolve problems/bugs related to inadequate specifications

Start to measure performance and other ECU parametrics

Start to exercise asynchronous events and resolve race conditions

Test corner casesin rea time

May use PRUs or PSEsto aid visihility (depending upon development philosophy)

Need higher dynamic range of abstraction from tools, from capturing HW events, correlating
events to program/data flow, to statistical analysis for SW routines

Calibration

e Tuning 5 to 15 thousand constants which impact drivability

e 3typesof calibration
e Initial constants supplied in SW development phase
e Dynamometer calibration for dynamic tuning of engine
* In-vehiclefor fina calibration

Dynamometer

« Approximately 30-50% of constants are calibrated with dynamometer (i.e. ignition control —
misfire, knock, torque, etc.)

e May use PRUsto aid visibility (depending upon development philosophy)

e Interface should be non-intrusive and meet synchronized data bandwidth requirements (i.e. 40
bytes/Imsec and morein future). Block transferred out each synchronized event and transferred in
periodically. ASAP standard exists for dynamometer calibration.

e Common technique for updating constants is external to MCU memory emulation (position
synchronized bank switched).

In-Vehicle

e Approximately 50-70% of constants are determined in in-vehicle calibration (i.e. cold/hot start,
altitude compensation, etc.)

» Performed with production-intent module

» Interface may beintrusive and should meet time and vehicle correlated data bandwidth requirements
(i.e. 40 bytes/10 msec and morein future). Block transferred in/out periodically

e Common technique for updating constants is external to MCU memory emulation. Seria interface
also used.

Table 1. Electronic Development Phases and Development Needs and Tools

It should be noted that there are different philosophies with regard to ECU development for powertrain
MCUs comprising fast on-chip instruction and data memories. One approach is to provide more MCU
visibility to enhance the development process by using a Port Replacement Units (PRU) in module
versions up through in-vehicle calibration. This adds risk since the PRU may be removed in the production
module, which may impact ECU parametrics. Another approach is to transition to the production-intent
module as early as possible in the development process. This approach provides lower risk but with
potentially more difficulty during the development process. There are also varying approaches in between
these two which trade-off the devel opment process and risk.

Calibration Performed with External to MCU Memory Emulation

The predominant technique used today to perform calibration on the dynamometer and in-vehicle is with
external to MCU memory emulation. A popular solution is Hewlett Packard’'s Parallel Interface Adapter
(PIA) as shown in Figure 3. On the left side of Figure 3 you see the relevant pieces of the ECU, and on the
right side the main building blocks of the PIA are shown.

When calibration is performed visibility is needed of intermediate calculated values (calibration variables)
such as calculated ignition time, actual RPM, sensor temperatures, knock sensor value, etc., Many of these
variables are caculated every cycle of each cylinder. The PIA provides instrumentation access to these
variables through data acquisition hardware. By snooping the MCU’s external bus for writes to calibration
variablesin the ECU SRAM, data acquisition hardware provides an image of the calibration variables for
instrumentation access.

After parametric analysisis performed the two RAM banks of the PIA allow instrumentation to update
calibration constants for ECU access. Chip select logic on the ECU is used to overlay flash memory
containing calibration constants with new constantsin RAM bank 0/1. So instead of reading calibration

-6 -

constants from the flash, the MCU reads them from one of the RAM banks. Which one of the banks
calibration constants are read from is determined by a switch triggered by engine TDC occurrence. The
position synchronous switch allows for coherent changes to calibration constants.

ECU PIA

Connector

Calibration

|

| Engine

I Synchronous

Switch RAM Banks

I for Calibration

| Constants

I Access from
EizsLé X/I l\?u G- | rumentation
W,

Data Acquisition
of Calibration
Variables

Calibration
Variables
Only

cs RAM Bank
Logic |I Overlay

Figure 3: Calibration Example using a PIA

THE EVOLUTION OF POWERTRAIN MCUs

Since the first application of semiconductors in engine control the powertrain MCU has continuously
evolved. As requirements have exploded due to more intensive control strategies and environmental
restrictions, the powertrain MCU has evolved into a very high-performance and cost-effective solution.
This evolution has been good for automotive manufacturers and their customers, but a result has been the
creation of anew paradigm which will negatively impact devel opment processes and tools. In the remainder
of this paper the impact on development processes and tools will be investigated. Additionally, options for
new powertrain MCUs will be discussed to simplify development processes and tools.

Today’s ECUs

Powertrain MCUs used today are predominantly Complex Instruction Set Computers (CISC). An example
architectureis Motorola’'s CPU32-based MCU as shown in Figure 4. CISC MCUs do not require a high
bandwidth instruction path since typical instructions require multiple clocks to execute. Furthermore a
unified bus architecture is sufficient in many applications. Thus delays for off-chip accesses and visibility
cycles do not significantly impact overall MCU performance.

Figure 4. Motorola’'s CPU32-Based MCU

Figure 5 shows typica development tool usage for this generation of MCUs. Full program/data flow
visibility is readily available with no intrusion, although a PRU may be required for single-chip MCUs.
Cadlibration may be accomplished with external to MCU memory emulation with little or no intrusion. SW
development is supported through the Background Debug port.

S/W Library &
Network Services

ECU Verification, DeBug & Calibration

-

Disk Drive
& Network
Servers

Printer

Compilers
Linkers
Config Mgmt

Processor
Emulator

HIL Engine
Emulator

GP
Instruments

Logic Analyzer

Main ECU
I/O Access

Engine Control
Module

Portable
Cal. System

Memory
Emulation

PC Stn

External Memory Emulation
allows for high-speed, non-
obtrusive access and mod-
ification to all ECU parameters.
Banked emulation allows for
coherent access.

Figure 5. ECU Development Bench for Today’s MCUs

Some recent CISC implementations as shown in figure 6 have evolved to include a high bandwidth daa
path to improve performance. This evolution signals a trend in engine control MCUs towards more
performance with the addition of embedded, single clock buses.
development model since there is less external bus visibility of internal data or instruction flow
information, or a reduction in performance if flow information is shown in real time on the external bus. A
reduction in performance results when transactions on the fast embedded bus are prohibited and re-directed to
the internal bus for the purpose of increased visibility on external bus pins. This increases bus traffic on the
internal/external bus and slows performance. An aternate approach isto pin out the embedded bus for data

visibility.

It also represents a paradigm shift in the

Inter nal Bus (multi-clock)
| | |

Ext Bus (multi-clock)

i

Private One Clock Bus

RAM CPU32X

Figure 6: Motorola’'s CPU32x-Based M CUs

Migration to RISC

Ever increasing performance needs for automotive engine control applications have precipitated a migration
to Reduced Instruction Set Computers (RISC). RISC architectures by nature require high bandwidth data
and instruction paths to ensure high performance, with most instructions being executed in one clock cycle.
With the advent of RISC architectures into engine control there are performance, features and development
trade-offs to understand and exercise wisely.

RISC processors achieve high performance by utilizing multiple independent execution units which may be
executing instructions in paralel. A scoreboarding technique may be used to determine instruction daa
dependencies. Instructions may even complete out of sequence if there are no data dependencies. RISC
implementations with a Harvard architecture comprise separate instruction and data buses. Autonomous
instruction fetch and data load/store execution units are employed to maintain the high instruction/data
bandwidth. The result is that multiple instructions may complete or retire on a single clock cycle.
Additionally instruction and data buses require high-bandwidth (1 clock cycle access), which may result in a
performance or visibility "bottle neck" through the external bus interface. Thus development support for
program trace is more complicated since not all program/data flow is typically echoed on the external bus.

To meet instruction fetch demands of RISC architectures an on-chip instruction cache (1 clock access) is
typicaly utilized, with burst fetches to the off-chip instruction memory. And to meet data access demands
of RISC architectures fast on-chip RAM (1 clock access) is typicaly utilized. Figure 7 illustrates an
example of an internal Harvard/external unified architecture as implemented on Motorolas MPC509
PowerPC MCU. This architecture allows for fast on-chip access to data/instructions to achieve high
performance.

For this and similar MCUs automotive system developers are required to make development trade-offs
which impact performance. Enabling instruction show cycles (show all cache hits, show only changes of
flow, or show only indirect changes of flow) provide visibility of cache accesses needed for program trace,
but at the cost of more bus traffic and lower performance. Processor state information is provided externaly
each clock to indicate if the current instruction is sequential, branch direct taken, branch indirect taken,
exception taken, or branch not taken. Information is aso provided on how many instructions complete eech
clock. With this state information and visibility of branch addresses, referred to as branch trace messaging,
the program flow can be reconstructed by devel opment toolsin a post-analysis manner.

- 10 -

Enabling data show cycles (show al internal accesses or show only internal writes) provide data flow
information but with lower performance. It should be noted that if show all is enabled for both data and
instructions then the MPC509 operates in the performance class of its CISC predecessors.

Private One-Clock Bus

Data Bus (1 clock)

Figure 7: Motorola’'s MPC509 PowerPC MCU

With fast on-chip data memory developers also trade-off visibility needed for data acquisition of calibration
variables againgt performance. Visibility is gained by data write showcycles, also caled data write
messaging, or data "echo" cycles on the externa bus. External data write showcycles reduce externa bus
bandwidth available and typically needed for instruction fetches, and can also slow the interna data bus.

New Trade-offs for Tomorrow's ECUs

More recently fast instruction memories have also been integrated on RISC MCUs for the improved
performance/integration/cost of a single-chip solution. Refer to figure 8 for an example of Motorola's
MPC555 PowerPC architecture. The challenges offered with the emergence of the new 32-bit single-chip
RISC MCUs comprise providing the visibility needed for cdibration, logic andyzer and processor
emulation while not compromising performance and cost saving features. The MPC555 aso addresses this
problem by providing trade-offs to the development engineers. Development engineers can choose from a

number of options which provide an increasing level of visibility, but with a reduction in performance ad
festures.

- 11 -

Inst/Data Bus (1 clock)

Data Bus
OCK

Figure 8: Motorola’'s MPC555 PowerPC MCU

To provide visibility for logic analyzer support the MPC555 device should be configured in one of the
expanded modes offered. The Addr/Data/GPIO pins can be configured as GPIO (single-chip mode), as Addr
and GPIO (alows instruction showcycles for program trace) or as Addr and Data (for complete visibility).
An external PRU can be designed to provide needed GPIO if an expanded mode is used. Although these
options provide a range of solutions which may meet needed development and functional capabilities,
expanded mode options may only be acceptable to some powertrain developers for preliminary development
stages. Additionally, there would be a varying degree of performance degradation, depending upon which
expanded mode configuration and showcycle configuration is selected. Showcycle options and processor
state visibility information offered on the MPC555 are similar to the MPC509.

To perform calibration several options are available on the MPC555, depending upon if the device is
configured in an expanded mode or in single chip mode. Cdlibration performed with the device in an
expanded mode configuration may be accomplished through external to MCU memory emulation. This
can be accomplished with an ECU configuration similar to Figure 3, with the addition of a PRU and the
exception that on-board flash would not be required. By using a feature of the MPC555 to overlay daa
accesses within a programmable region in the internal flash, these accesses can be mapped directly to an
external RAM bank. There may only be minimal performance impact for accessing constants externaly as
the on-board flash is optimized for fast instruction fetches, but requires multiple clocks for data accesses.

Cadlibration performed with the device in the single-chip configuration may be accomplished through an on-
chip serial link such asa CAN link. Due to data acquisition requirements for calibration on a dynamometer
it may only be practica to perform in-vehicle calibration through the serial port. Even so, the processor
overhead required for managing the data transfer through the serial link should be considered when evaluating
this option, as it may be too intrusive. The CAN link on the device has 16 transmit/receive message
buffers of 8 bytes, for atotal of 128 transmit/receive bytes which can be queued. This feature alows for a
minimal number of interrupts to support data acquisition and cdlibration.

- 12 -

Table 2 summarizes some of the development trade-offs for the MPC555 and characterizes performance
impact and related issues.

Addr/Data/ Performance Impact | Processor
GPIO Usage StateInfo | Comments
Program Flow Addr & GPIO Performance impact Latchedeach | Post processing required by tools;
estimated inthe 0% to | clock by tools | PRU may be required;
5% range (code Performance impact may not be
dependent) for branch acceptable to some devel opers
trace messaging
Program and Addr & Data Performance impact Laichedeach | Post processing required by tools;
Data Flow estimated to be larger clock by tools | PRU may berequired;
than 5% (code dependent) Performance impact may not be
for branch trace and data acceptable to some devel opers
write messaging
Calibration Addr & Data Minima performance N/A Dynamometer or in-vehicle
Option #1 - impact for accessing calibration; PRU may be required;
Parald Interface RAM banks with 0 wait Performance impact may not be
and external to state external memory; acceptable to some devel opers
MCU memory additional performance
emulation impact dependent on
number of cal variables
being acquired
Cadlibration GPIO Performance impact N/A In-vehicle calibration;
Option #2 - primarily dependent on Performance impact may not be
Seria Interface interrupt rate required for acceptable to some devel opers,
managed by instrumentation Requires cal constant pointersin
CPU RAM to re-map desired constants

from Flash to RAM

may be accomplished either by external to MCU memory emulation, or possibly via a serial link.

Table 2: Development Trade-offs for the MPC555

Figure 9 shows possible development tool usage for the MPC555. In comparison to the current
development tools use model, as shown in Figure 5, full program/data flow visibility will result in
intrusion. The development tools will be more complicated since post analysis is necessary. Calibration

SW

development is supported through a Background Debug port, although port definition has evolved.

- 13 -

S/W Library &
Network Services

ECU Verification, DeBug & Calibration

-

Disk Drive
& Network
Servers

Printer
r—\

—-

Wk Stn

=

(
Processor LIEJ

Emulator ll.L

Compilers
Linkers
Config Mgmt

ECU S/W Development

HIL Engine

Emulator Portable
GP Cal. System
Instruments IIII
- e

Scope imu..

Main ECU
I/O Access

Logic Analyzer

Serial Bus
(CAN)
L~

Serial Cal.

BDM
Access

Engine Control
Module

| Port
Replacement
Unit

Memory
Emulation

Controller

Figure 8: ECU Development Bench for the MPC555

- 14 -

ADDRESSING DEVELOPMENT PROBLEMS FOR TOMORROW'’S
POWERTRAIN MCUs

Asthe new generation of RISC powertrain M CUs propagate through the automotive development cycle
(which can take several years) there will likely be more complexity and difficulty in debugging the ECU
reliably and efficiently. Simply stated, there isless support for the devel opment process in the new high-
performance single-chip RISC MCUSs, which could create critical and costly delaysin the development
cycle. Additionally, as powertrain MCUSs continue to evolve, superscalar or multiple-issue RISC
implementations may be used as the central processor. With the capability to issue multiple instructions in
one clock cycle, thiswill only magnify the development support problem. Thusit is essential to address
thisimpending problem with a strategy with which both automotive and tools devel opers can agree.

Recommendations for Tomorrow's ECUs

A Real-time Embedded Application Development Interface (READI) sandard has been proposed by
Motorola. The Nexus Consortium, comprising world-wide leaders in semiconductor 1Cs and development
toals, has adopted and enhanced the READI standard. Key milestones regarding the Nexus standard are

Alpharelease on 16 June 98

Beta release on 16 October 98

Nexus Consortium announcement at Convergence ‘98 on 19-21 October 98
1.0 release on 18 December 98

The proposed standard can be down-loaded from the website www.nexus-standard.org. The intent for the
standard is to improve the way embedded systems (MCUs, MPUs and DSPs) are developed. Automotive-
specific needs, such as calibration, are covered in the development interface standard.

The proposed standard is JTAG-based (IEEE 1149.1 standard). It defines a standard development use for the 5
JTAG pins, which are already available on the mgjority of embedded processors. JTAG pins are used to
access standardized development registers and for read/write access to internal memory-mapped resources
during runtime. The standard also defines an auxiliary port (2 or more pins), which provides for high-speed,
packet-based messaging. The auxiliary port is needed for run-time visibility and controllability such as
program trace, data trace, memory substitution, read/write access to internal memory-mapped, and other
high-bandwidth information transfers (vendor defined).

Table 3 summarizes the major problems which were discussed in this paper. It also lists the
recommendations for solving these major problems using the Nexus standard.

- 15 -

Problem/T ask

Method(s) used for

Method(s) used for

Nexus Standard

Today's MCUs RISC MCUs
Use Model: HW Dev. CPU32-based MCUs use Customer may trade off Defines an auxiliary port for
and HW/SW Int. configurable showcyclesto | performancefor outputting branch trace and data
High performance on-chip provide visibility of fetches | visibility. As more access | write messaging at high
instruction cache or flash to the outside world with no | types are configured for speeds. The port is capable of
eliminates visibility needed | performance impact. showcycles performance | meeting bandwidth
for program trace. Need Requiresthat external address | can degrade accordingly requirements to support
program trace visibility with | and data pins are available. for some architectures. messaging with no

acceptable impact to the
system under test.

Branch trace messaging is
the minimal

configuration needed for
visibility and may result
ina performance impact
in the 0% to 5% range
(code dependent). Requires
that external address pins
areavailable.

performance impact. Bandwidth
requirements can be met viaan
expandable port size or clock
rate. |mplementations may
include a message queue, which
eliminates the need to stall the
processor for most scenarios.

Use Model:
Int.

High performance on-chip
SRAM eliminates visibility
needed for detatrace. There
are 2 types of datavisibility
needed: (1) Which process
wrote which data parameter
and what new value was
written? (2) For achosen
data parameter which process
accessed it?

Need data trace visibility
with acceptable impact to
the system under test.

HW/SW

CPU32-based MCUs use
configurable showcyclesto
provide visibility of data
accesses to the outside world
with no performance impact.
Requiresthat external address
and data pins are available.

Customer may trade off
performance for

visibility. Branch trace
and data write messaging
is the minimal
configuration needed for
data write visibility (#1)
and may resultina
performance impact of
larger than 5% (code
dependent). Branch trace
messaging and
watchpoints are the
minimal configuration for
dataread visibility (#2)
and may resultina
performance impact in the

See box above. Watchpoint are
also supported.

0-5% range (code dep.).
Use Model: Cal External to MCU memory Can use similar method Auxiliary port may provide
Data acquisition in ECU emulation allows for direct as used with today’s data acquisition using data

(time and position
synchronous) while running
an engine or vehicle. Need
access to calibration
variables with acceptable
impact to the system under
calibration.

Today’ s bandwidth needs are
> 40 bytes/1 msec for
position synchronous and >
40 bytes/10 msec for time
synchronous.

access to cdibration
constants with no
performance impact.
Requiresthat external address
and data pins are available.
Time synchronous data may
aso be accessed by a serid
link.

MCUSs, but thereisa
performance impact
dependent on number of
calibration variables
(stored in on-chip fast
RAM) being acquired .
Requiresthat external
address and datapinsare
available.

write messaging (transparent to
SW) or data messaging (SW
writes to designated address(es),
which are queued and
transferred).

- 16 -

Use Model: Cal
Updating calibration
constants coherently in ECU
while running an engine or
vehicle. Need to switch
between at least two maps
or banks at a position
synchronized event. Need
calibration accessibility with
acceptable impact to the
system under calibration.

External to MCU memory Can use similar method
emulation allows for as used with today’s
instrumentation access to MCUs.

calibration constants with
low (or not any) performance
impact. Position
synchronized bank switching
hardware asimplemented on
aPlA isused for control of
emulation memory banks.
Requiresthat external address
and data pins are available.

Provides access viaJTAG or
auxiliary port to internal
calibration tuning block.
Allows for capability of a
single-chip solution (no PIA

required).

Use Model: HW Dev.
and HW/SW Int.
Muxing debug pins with
GPIO can makelogic
analysis tools exhibit
unpredictable behaviors that
developers consider
undesirable

Not applicable. No work-around.
Customer must put up
with these anomalies.

Early tool vendor involvement
will help customer understand
potential problems which may
be introduced in the
development process by such
muxing schemes. Auxiliary
port is reset configurable.

Use Model: HW Dev.,
HW/SW Int. & Cal.
MCU vendors do not

support standard
development
interface/methodol ogy across
MCU architectures

Powertrain MCU vendors do not always provide the same
development interface and features across their product
line. This makesiit difficult for automotive developersto
upgrade since it requires an investment in capital and
engineering.

An industry-wide development
standard would developersto
leverage existing development
tools and methodologies

- 17 -

