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Nexus is an increasingly widely used IEEE standard for debug of processor and digital 
systems architectures. It provides for a range of debug features and is supported by many 
debug tool vendors. This paper discusses the Nexus standard and its capabilities and 
presents approaches to architectural implementation and integration of Nexus in several 
types of systems, including single processor, multiple processor, and systems debug of 
multiple processors and buses for integrated system level debug of complex architectures. 
The paper also discusses specifics of Nexus IP and architectures that have been 
developed by Freescale. 
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1. The Need for Debug 

Among the engineers doing complex designs, there is never any argument on the need for 
more and better tools to address the verification and analysis of complex SoC designs. 
Any engineer who has been through the effort of bringing up a new device, has always 
found times when having more visibility into the internal operations of the design would 
have significantly improved the time and effort involved in debugging problems. This 
paper addresses embedded debug based on Nexus 5001, as an approach to adding debug 
capabilities to SoC verification and analysis toolkit.  

Debug methodologies serve as a compliment to EDA flows, which have evolved a variety 
of solutions to address verification needs for pre-silicon design, from diverse simulation 
based methodologies to emerging formal and assertion based methods and increasing 
levels of system level abstraction. This verification flow largely works under the 
assumption that the verification effort is largely done when the design files are handed off 
to the foundry for fabrication. Anyone who has been involved in the in-silicon debug 
cycle, loosely defined as everything that must be verified and integrated from the time 
that silicon is received back from the foundry to the point of being ready for a production 
release, knows that this is far from the case. Much as EDA based design flows and their 
use have benefited from standardization in tools and interfaces, debug methodologies can 
similarly benefit from standardization in implementation and capabilities. Nexus 5001 is 
one such approach to debug standardization.  

Debug as an issue will increase with complexities, and recent data has indicated that 
while design verification times have decreased per given silicon complexity due to the 
use of 3rd party IP and advanced EDA, the relative time of in silicon debug has trended to 
increase, signaling for the need for better debug tools. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Nexus 5001 is a debug initiative that is based on the IEEE ISTO 5001 debug 
specification. Nexus 5001 was defined in 1999 and its development and proliferation is 
managed by the Nexus 5001 Forum™, which evolved as a successor to the Global 
Embedded Processor Debug Interface Standard Consortium (GEPDISC), formed to 
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Figure 1 : Cost of Debug in the design process 



develop an embedded processor debug interface standard for embedded control 
applications.  The latest version of the Nexus standard was released in 2003.   
 

2. Nexus 5001 – A Brief Overview 

The goal of Nexus 5001 is a general-purpose specification that addresses the diverse 
challenges for embedded processor and digital systems debug interfaces. An ever-
increasing range of applications (data communications, automotive powertrain, computer 
peripherals, wireless systems and other control applications) have constantly increasing 
complexities that require more comprehensive debug features and benefit from more 
standardized interfaces. As advances in semiconductor and system design continue, these 
types of embedded applications are using higher-performance embedded processors. 
Efficient use of these embedded processors requires software and hardware development 
tools that can easily access critical processor functionality. The lack of a unifying 
standard among the various embedded processors on the market has impeded this 
accessibility, preventing tool vendors from creating standard tools with consistent 
functionality across a broad range of processors. Nexus 5001 addresses this issue, by 
providing a consistent set of auxiliary pin functions, message based transfer protocols and 
standard development features to facilitate debug implementations. The standard itself is 
open and processor-independent, but the implementations will be user-specific. The rest 
of this section provides a basic overview of key Nexus features; discussing the Nexus 
signals, messaging resources, registers, and concluding with a discussion of the different 
classes of Nexus implementations. Some descriptions are abbreviated in maintaining the 
flow of information, however the full release of the Nexus 5001 specification [1] is freely 
available for download from the Nexus website. http://www.nexus5001.org/ 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Key features in Nexus debug block 
 

2.1 Nexus Signal IO 

Nexus 5001 leverages the IEEE 1149.1 standard, which is widely accepted as a test and 
debug pin interface. The Nexus standard defines an extensible auxiliary port (AUX) that 
may either be used with the IEEE 1149.1(JTAG) port or as a stand-alone development 
port. The Nexus standard defines the auxiliary pin functions, transfer protocols and 
standard development features to support both 1149.1 and AUX usage. The auxiliary port 
provides a wider, higher-bandwidth data transfer conduit and can define both AUX input 
and output ports.  Auxiliary Out ports are used primarily to provide additional pins in the 
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port for higher trace throughput. It also uses the JTAG port in Nexus-specific ways to 
implement various classes of services such as allowing Nexus trace output to be 
embedded into JTAG messages.  
 
AUX  IO Description of Auxiliary Pins 
MCKO Message Clockout (MCKO) is a free-running output clock to tools for timing MDO 

and MSEO pin functions. MCKO can be independent of the embedded processor’s 
system clock or an embedded processor’s clock pin may be used as a functional 
equivalent for MCKO. 

MDO[M:0] Message Data Out (MDO[M:0]) are output pin(s) used for sending messages such 
as trace export and other read operations, memory substitution accesses, etc. 
Depending upon output bandwidth requirements, one, two, four, eight, or more pins 
may be implemented. 

MSEO[1:0] Message Start/End Out (MSEO [1:0]) are output pins that indicate when a message 
on the MDO pins has started, when a variable-length packet has ended, and when 
the message has ended. Only one MSEO pin is required, but two pins provide  for 
more efficient transfers.  

EVTO Event Out (EVTO) is an optional output pin to development tools indicating exact 
timing for a single breakpoint status indication. Upon a breakpoint occurrence of 
the programmed breakpoint source, EVTO is asserted for a minimum of one clock 
period of MCKO. 

  
MCKI Message Clockin (MCKI) is a free-running input clock from development tools for 

timing MDI and MSEI pin functions. MCKI can be independent of the embedded 
processor’s system clock. 

MDI[N:0] Message Data In (MDI[N:0]) are inputs used for downloading configuration data, 
writing to on chip resources, etc Depending upon input bandwidth requirements, 
multiple pins may be implemented. 

MSEI[1:0] Message Start/End In (MSEI [1:0]) are inputs that indicate when a message on the 
MDI pins has started, when a variable-length packet has ended, and when the 
message has ended. Only one MSEI pin is required, but two pin implementations 
provide more efficient transfers. 

EVTI Event In (EVTI) is an input pin allowing off chip control such as processor halts 
(breakpoints) or synchronized Program/Data Messages  

RSTI Reset In (RSTI) is a pin for resetting the Nexus port resources. 
 
 
JTAG 
Pins 

Description of JTAG (IEEE 1149.1) Pins 

TDI Test Data Input (TDI) provides for serial movement of data into the JTAG port. 
TDO Test Data Output (TDO) provides for serial movement of data out of the JTAG port. 

All target accesses initiated via the JTAG port should be transmitted by the target 
via TDO (not via AUX OUT). 

TCK Test Clock (TCK) is an input pin that provides the clock for the JTAG port. 
TMS Test Mode Select (TMS) input provides access to the JTAG TAP state machine. 
TRST Test Reset (TRST) input optionally provides for asynchronous initialization of the 

JTAG IEEE 1149.1 controller. 
RDY Ready (RDY) output is optionally used to accelerate data accesses through the 

JTAG port. 



 
For a full-duplex AUX with IEEE 1149.1 pins, a minimum of two auxiliary pins are 
required for compliance [Message Data Out (MDO) and Message Start/End Out 
(MSEO)], assuming a system clockout pin can be used for MCKO. EVTI is also 
recommended for tool-initiated synchronization. The performance classification, 
however, would also be minimal and may meet the transfer bandwidth requirements for 
only low-end applications or lower compliance classifications. 

Nexus implementations may have one or two Messaging Start/End-Out (MSEI/MSEO) 
pins, depending on complexity of the input and output state machines. Two bit messaging 
pins allow back-to-back data transfers, speeding delivery of memory data or trace 
information. 
 

2.2  Nexus Messaging 

Nexus Messages consist of a 6-bit TCODE (Transfer Code), which are Nexus specific 
instructions followed by a variable number of packets (the number of packets for each 
TCODE is defined in the standard).  Messages can be Sync or Non-sync.  Sync messages 
include full address and Non-sync only include relative address changes.   Each message 
also contains a SRC field (source ID) to help development tools identify the source of a 
particular Nexus message in a multi-processing SoC sharing a single debug port. Packet 
types supported include: 

Variable: a variable-size packet means the message must contain the packet, but that the 
packet’s size may vary from a minimum of 1 bit. When messages are transferred via the 
AUX, variable-size packets must end on a port boundary. 

Vendor-Fixed: These are used to allow Nexus packets to match characteristics of a 
vendor’s device. Vendor-fixed packets may be of zero length (not implemented). 

Vendor-Variable: These are used to allow Nexus packets to match characteristics of a 
vendor’s device. Vendor-variable packets may be of zero length (not implemented). 
When messages are transferred via the AUX, vendor-variable packets must end on a port 
boundary. Variable-size packets may have different lengths in messages of the same type, 
so MSE signaling protocols are used to determine the end of packet boundaries. Typically 
vendor-variable packets are target processor dependent and have a variable size 
determined by the processor vendor. These packets are normally reserved for the end of a 
Public Message where the vendor may implement additional fields. 
 

 TCODES can be either Public (defined in the Nexus standard) or User defined. Public 
TCODES defined in the Nexus standard (IEEE-ISTO 5001-2003) include a range of trace 
options as well as other Nexus operations. These include: 

• Program Trace: 
o Direct Branch  
o Indirect Branch  
o Indirect Branch With History  
o Synchronization 
o Resource Full 
o Repeat Branch 



o Repeat Instruction 
o Correlation 

• Data Trace: 
o Data Write  
o Data Read  

• Ownership Trace 
• Data Acquisition 
• Read/Write Access 
• Memory Substitution 
• Port Replacement 
• Watchpoint 
• Status   
 

User Defined TCODES can be defined by silicon or IP developers for debug features not 
covered in the standard, similarly to User Defined instruction features in JTAG. 
 

2.3 Nexus Registers 

Nexus defines a number of recommended registers, which facilitate the integration of 
debug support to different cores.  Of particular interest for multicore designs, each core or 
element on a device may be assigned a different ID in a Device identification (DID) 
register to allow discrimination and selection of control and debug operations associated 
with a given block or subsystem.   

Nexus also defines other recommended registers for debug purposes. These include: 
• Client Select Register (CSC) 
• Development Control Register (DC) 
• Development Status Register (DS) 
• User Base Address Register (UBA) 
• Read/Write Access Registers (RWA / RWD / RWCS) 
• Watchpoint Trigger Registers (WT) 
• Data Trace Attribute Registers (minimum of 2) (DTSA / DTEA / DTC) 
• Breakpoint/Watchpoint Control Registers (minimum of 2) (BWC) 
• Breakpoint/Watchpoint Address/Data Registers (minimum of 2) (BWA/BWD) 

  

2.4 Nexus Implementation Classes 

Nexus implementations are divided into four classes, so that given designs can select 
features of importance and not be burdened with more advanced features that are not 
applicable or efficient to their debug needs. This allows a variety of debug features to be 
supported, while at the same time keeping the number and types of different Nexus 
implementations that need to be tracked and supported to a manageable number. All 
Nexus classes by definition include all of the features in (i.e. are a superset of ) the prior 
class. 
 



The key features of the different implementation classes are summarized in the following 
table. 
 

NEXUS 5001 IMPLEMENTATION CLASSES  
 

Nexus Services Features 

Class 1    
  Basic run control 

 Static debugging   
 Breakpoints 

 Single step 
 Set breakpoints and watchpoints 
 Two breakpoints minimum  
 Device identification   
 Static memory and I/O access 

Class 2  
  Instruction Trace   
  Watchpoints 

 Watchpoints  
 Ownership Trace  
 Program Trace 

 All Class 1 features  
 Monitor process ownership in real time  
 Real-Time program tracing   

Class 3  
  Data Trace  
  Read/write Access 

 Data Trace  
 Real-time read/write   
 Transfers 

 All Class 2 features  
 Access memory and I/O in real time   
 Real-Time data tracing 

Class 4  
  Memory and Port 
  Substitution 

 Memory Substitution 
 Port Replacement 

 All Class 3 features  
 Start traces on watchpoint occurrence  
 Program execution from Nexus port 

 
The most basic, Class 1, provides features similar to standard JTAG implementations. 
However, it sets certain minimum requirements, such as the need for at least two 
hardware breakpoints. Debugging halts the chip like normal JTAG products.  

Class 2 contains more complex debugging features, with real-time monitoring. It also 
adds instruction tracing and more sophisticated watchpoints. Class 2 program trace 
feature allows indirect branches to be flagged, making it easier to differentiate indirect 
branches from exception handling operations. Additional messages are included for 
improved branch tracking. The format of the trace data allows eliminating redundant 
addressing information, which thereby increases throughput. 

Class 3 allows Data tracing services and also includes the ability to read and write 
memory and I/O while the processor continues to run. This makes the system design 
more complex but significantly improves the debugging capabilities. 

Finally, Class 4 delivers features found in many in-circuit emulators (ICEs), like the 
ability to remap memory and I/O ports. This is especially useful when simulating 
peripherals. It can also be used to provide other applications running on the testing 
system with access to shared memory. 

In addition to the four classes, Nexus defines a number of optional features. These 
include starting memory substitution upon watchpoint occurrence, monitoring data reads 



while the processor runs in real-time, port replacement and port sharing, and the ability to 
transmit data values for acquisition. 
 
3. Processor System Debug 

Debug features for embedded processors have been recognized from the earliest days of 
embedded processing as being an important requirement for processor verification. Since 
detailed simulation of processor operations for many applications has historically not 
been feasible due to the large number of cycles required for many applications, processor 
analysis via emulation and trace of processor operations has been required for verification 
and hardware/software integration. Most licensable embedded processors include some 
instrumentation features to support debug. While the specifics vary with each processor 
type, debug for processor cores typically provide similar debug features: 

1. Processor specific run control (start, stop, software and hardware breakpoints, and 
single-step run control)  

2. Monitoring of hardware and software breakpoints for triggering,  

3. Real-time Trace that can include execution (instruction) and/or data trace. Trace 
operations can be triggered from conditions such as instruction execution, 
memory, or IO operations, address range, or opcode value.  

Most processor debug environments can be made Nexus complaint by adding Nexus 
wrapper layer around the existing debug blocks. The value of Nexus for processor debug 
is that it allows a consistent environment for different processor types to be integrated 
using a consistent methodology.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 : Processor Trigger & Trace Instrumentation 
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Among the most valuable processor debug features for analyzing operational 
performance is execution trace. Trace in general, is a complex debug technology since it 
requires either a large buffer or high bandwidth in order to export trace information.  
Nexus defines a method of trace compression that takes advantage of the properties 
relating to execution of instructions being pre-defined during the programming and 
unlike many other types of trace operations, is largely deterministic. With the exceptions 
of branching and other instruction that are conditional on data, the sequence of 
instructions through a processor is pre-defined during software development.   

To make efficient use of memory resources during execution trace, Nexus utilizes a 
processor instruction compression technique called Branch Trace Messaging, which 
reduces the trace memory required by focusing only on tracing instruction flow 
discontinuities (typically branches). Since branches and conditional operations typically 
are a small percentage of an overall instruction execution, this can greatly expand the 
trace RAM utilization. Trace information can be tightly integrated with debugger 
software tools chains, to allow correlation analysis to the source code.  Nexus also 
supports relative addressing to reduce the number of required address bits transmitted for 
normal messages.  Certain initialization and exception cases (defined within the standard) 
will cause normal trace messages to be “upgraded” to sync type messages in which the 
entire address is transmitted. Execution trace can be compressed and later expanded for 
integration with code debugger tools. This feature allows debug blocks storing instruction 
trace to leverage assumptions in instruction flow in order to conserve trace bandwidth 
and increase the number of instructions that can be stored in trace buffers or exported real 
time. 

For data trace operations, other than the use of relative address transmission (as in 
program trace), there is typically no such determinism that can be leveraged for the data 
itself to extend the use of trace resources, and as such data trace may require either larger 
trace memories for a given trace size or alternate methods of storing trace information.   

Even with compression, the time needed for trace export can be significant when relying 
only on JTAG TDO for transmitting data. This problem increases proportionally for 
multicore designs, where each processor and other block have their own debug 
information. The need for improving trace throughput is one of the reasons for 
implementing a Nexus Aux port as described previously. 

3.1 Other System Debug Considerations 

In most designs, processors are integrated with several other subsystems that also may be 
included in systems analysis, such as trace operations. Logic blocks included in many 
designs include co-processors for specific applications, memory controllers, peripherals 
and a host of other functions. Debug of these types of blocks can be supported by on chip 
logic analyzers that allow triggering and trace of logic operations, which is often done in 
tandem with processor debug operations. [2,3]. One variant of logic analysis important 
for many systems is bus level debug. Bus analysis typically takes one of two forms – 
signals of interest are traced at the bus interface (as example, an AMBA AHB port or 
OCP Socket interface), or from within the selected debug points in the bus fabric [4]. 

Just as buses operate in conjunction with processors and other IP, bus analysis must 
interface to other debug blocks.  Typically this is done using cross trigger interfaces to 



the other debug blocks for low latency triggering of the processor debug operations based 
on status in another core. Likewise processor output signals can be used to allow 
triggering of other trace operations to start and stop based on processor operations. These 
cross-triggering resources, combined with more global resources, such as time-stamping 
of trace information to improve synchronization and alignment of debug data being 
brought off chip, allow a more systems oriented focus on debug process, by allowing 
debug of subsystems operating in differing clock domains. 

3.2 Multicore Nexus Debug Approaches 

Nexus implementations can support the concurrent debug of both processor and bus 
operations. While each processor or logic/bus element in a design may have a native 
debug environment, debug information can be reformatted using Nexus interface 
wrappers, that packetize debug information into Nexus messages. These Nexus messages 
can then be merged at a Nexus port control level, to allow packets from many debug 
sources to be communicated over a common Nexus port. Since each debug block can be 
assigned an independent identification (DID) value, debug information can be redirected 
once off chip, at the probe interface or as a software operation.   

 
 

 

 

 

 

 

 

 

 

 

 

  

Figure 4 – Basic Nexus Multicore Debug flow 

Figure 4 shows this debug data flow, supporting a multicore architecture consisting of 2 
processor (or other) cores and a bus port or other bus level debug interface. All blocks 
have some native debug or analyzer blocks. The debug information is made into Nexus 
compliant messages, including any additional compression; by in line Nexus interface 
blocks with the different independent message streams consolidated into a single 
combined Nexus stream at the port interface.  

One of the issues in debug of multiple core systems is that even with debug information 
from different blocks being combined into a single Nexus stream, the control and 
synchronization of debug over many different core or subsystems remains largely 
independent. Having better control and synchronization of different debug resources can 
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significantly improve debug efficiency. MED (Multicore Embedded Debugger) is, as its 
name suggests, a debug architecture for multicore systems [5,6]. In addition to the Nexus 
interfaces for each of the on chip debug resources, it also includes cross triggering and 
system wide timestamping resources to help synchronize and cross-reference debug 
operations occurring at different parts of the architecture, allowing different off chip 
debugger environments to better comprehend the context and operations occurring in 
other parts of a design. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – A Nexus compliant MED environment 
 
Debug subsystems like Nexus introduce important changes in methodologies in the 
concept of analyzing the debug requirements during the architectural design phases of a 
project. Like many other supporting technologies, analyzing chip needs and debug 
strategies needs to be comprehended at early stages in a project. It is much more difficult 
to add debug at late stages of a design. Considering the debug resources after everything 
else is designed often severely limits the capability and quality of the debug solution. 
Different generic debug instrumentation IP is available, but the architecture and interface 
intensive nature of hardware debug often requires some customization. Nexus provides a 
toolbox and an approach to implementing a debug architecture, which can be customized 
to properly address differing architectures and unique analysis considerations. Properly 
implemented, a comprehensive debug solution can measurably improve the level of 
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testability, maintainability and analysis capabilities throughout the lifecycle of a chip 
design, however implementing the right on chip debug solutions also requires an 
engineering investment in understanding of how debug tools will be used as well as the 
considerations of all the tradeoffs for integrating debug solutions into a design. 
 

4. Nexus Product Implementations  

Freescale Semiconductor has architected and implemented Nexus based debug on several 
SoCs.  These SoCs have serviced many industry-wide markets including automotive, 
wireless and networking.  Two example SoCs are discussed in this section.   

One family of SoCs, initially offered for the automotive powertrain market utilizes the 
multi-processing features of Nexus to provide debug visibility to the processor core – a 
PowerPC e200z6, the enhanced timer processor units (ETPU), as well as the secondary 
peripheral bus. 

The MPC5500 family of SoCs support various debug facilities.  There are five major 
architectural blocks that provide the debug functionality: 
 

• PowerPC e200z6 Nexus1 Module (OnCE) – Class1 compliant debug of the CPU 
• PowerPC e200z6 Nexus3 Module – Class3 compliant trace of the CPU 
• DMA Nexus Module – Data Trace support for DMA data accesses 
• ETPU Nexus – Class3 compliant trace of Enhanced Timer Processor Units 
• Nexus Port Controller – Arbitration for Nexus I/O port 

 

Figure 6 : Freescale MPC5500 Multi-Nexus Implementation 
 
The PowerPC e200z6 Nexus modules support all required features as defined in Nexus 
Class1 and Class3 as well as the optional features of watchpoint trigger enable of 
program/data tracing and burst capability on Nexus initiated read/write accesses. 
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Class1 features such as breakpoint generation, single stepping, and internal resource 
access (CPU halted) are handled within the CPU’s JTAG-based static debug OnCE (On 
Chip Emulation) block. Watchpoints for Nexus3 are also generated within the OnCE 
module.  These eight watchpoints (for various programming events) can be used to 
trigger trace enable/disable, generate Watchpoint Messages and drive an optional EVTO 
output pin. 

The DMA Nexus Module supports tracing of data reads and writes on the peripheral bus. 

The Nexus Port Controller (NPC) module arbitrates between the various debug modules 
for the shared port and controls the port settings (MCKO divide ratio, port-width option). 

The second example is from a family of wireless processors nicknamed MXC.  The first 
generation of these SoCs combines a StarCore SC1400 DSP with an ARM11xx core and 
various mixes of peripherals and memory configurations. 

The DSP subsystem supports a slightly more enhanced set of debug facilities.  The major 
architectural blocks consist of: 
 

• SC1400 Nexus1 Module (EOnCE) - Class1 compliant debug of the DSP 
• SC1400 Nexus3 Module – Class3 compliant trace of the DSP 
• AHB Nexus Module – Data Trace support for AHB data accesses 
• Nexus Trace Buffer – Shared internal memory for dumping Nexus trace data 
• Nexus Port Controller – Arbitration for Nexus I/O port and Timestamp generator 

 

  Figure 7 : Freescale MXC DSP subsystem and Multi-Nexus Implementation 
 

The SC1400 Nexus modules support all required features as defined in Nexus Class1 and 
Class3 as well as the optional features of watchpoint trigger enable of program/data 
tracing, and data acquisition messaging for data logging.  In addition, the Nexus3 module 
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supports vendor-defined triggering of program/data tracing using the process ID, and 
specific messages for reporting core performance profiling information from the SC1400 
Debug and Profiling Unit (DPU). 

Class1 features such as breakpoint generation, single stepping, and internal resource 
access (CPU halted) are handled within the CPU’s JTAG-based static debug block - 
EOnCE (Enhanced On Chip Emulation). Watchpoints for Nexus3 are also generated 
within the EOnCE module.  These seven watchpoints (for various programming events), 
can be used to trigger trace enable/disable, generate Watchpoint Messages and can be 
connected to a cross triggering module for triggering events in other portions of the SoC.  
They also drive an optional EVTO output pin. 

The AHB Nexus Module supports tracing of data reads and writes on the peripheral bus 
and can generate additional watchpoints based on AHB address and/or data values.  
These watchpoints can also be used by a cross triggering module within the SoC.  
Additional AHB Nexus modules support data trace on the application side (ARM11) of 
the processor as well. 

Similar to the MPC5500 family, the Nexus Port Controller (NPC) module arbitrates 
between the various debug modules for the shared port.  In addition to the arbitration and 
port control, the MXC NPC module provides timestamping capability for the debug 
system by maintaining an “absolute” timestamp value that the individual Nexus modules 
can use within their messages, or for generating their own “relative” timestamp to reduce 
bandwidth penalty. 

The MXC SoCs also support internal storage of Nexus messages to an internal Nexus 
Trace Buffer (NTB) for retrieval at a later time.  These messages are sent to AHB 
memory within the SoC, which has allocated a secondary function for the storage of trace 
information.  This information can be read out through the JTAG port (or other memory 
access mechanisms) when real-time visibility is not as critical.  This allows more trace 
data to be stored by reducing bandwidth restrictions associated with sending data off 
chip. 
 

Summary:  

Nexus has been evolving as an IEEE standard for several years and is seeing increased 
use as a debug solution in many different architectures and markets. Using Nexus 
provides several advantages to designers, in providing a widely supported infrastructure 
and providing a framework for customized solutions. As an "architecture agnostic" 
interface, Nexus also provides advantages to tool vendors by reducing development costs 
and time to market. Freescale has been an industry leader in developing Nexus based 
solutions to support a range of processor cores, and configurations.  The Technical 
Committee within the IEEE-ISTO 5001 Consortium is continually working to add feature 
enhancements to the standard and support for wider range of SoC architectures.  
 
 
In this paper, we have presented a technical overview of Nexus architecture and the IP 
and integration activities required to integrate a Nexus solution into a on chip systems 
architecture, including Nexus based debug components and interfaces for debugging the 



cores, and subsystem, which include debug of embedded buses. Nexus features can be 
added to most debug blocks to allow their integration into a Nexus debug environment.  
Nexus environments also allow support of advanced debug features such as complex 
triggering, performance analysis, and debug control that are needed for emerging 
multicore architectures. Nexus integration of debug resources provides a multi-core 
debug environment that allows port level sharing for the debug of multiple cores. 
Implementing system level debug features such as cross triggers and timestamping and 
the ability to merge Nexus information using a Nexus Port Controller as a single port 
interface enables integration of debug information, communications, and arbitration of 
multiple Nexus debug blocks, which can have significant benefits in debug of system 
level silicon. 
 
Additional information on Nexus, including membership in the Nexus 5001 Forum, is 
available at http://www.nexus5001.org/ 
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