

Nexus Based Multi-Core Debug

Dr. Neal Stollon, First Silicon Solutions
neals@fs2.com

Rich Collins, Freescale Semiconductor
rich.collins@freescale.com

���������

Nexus is an increasingly widely used IEEE standard for debug of processor and digital
systems architectures. It provides for a range of debug features and is supported by many
debug tool vendors. This paper discusses the Nexus standard and its capabilities and
presents approaches to architectural implementation and integration of Nexus in several
types of systems, including single processor, multiple processor, and systems debug of
multiple processors and buses for integrated system level debug of complex architectures.
The paper also discusses specifics of Nexus IP and architectures that have been
developed by Freescale.

�	�
����
��������
��

�

Neal Stollon is a systems engineer and Director of Technical Marketing with First Silicon
Solutions. He has over 20 years digital design and processor development experience at
Texas Instruments, LSI Logic, Alcatel, and others. Dr. Stollon has a Ph.D in EE from
SMU, is a Texas Professional Engineer, has written over 25 technical papers (including 5
papers for DesignCon) and holds 7 patents.

Rich Collins is a Debug Architect within the Networking and Computing Systems Group
of Freescale Semiconductor. He has over 13 years of digital design experience mainly
focused on core peripheral and debug related IP development. He is currently serving as
Technical Co-Chair of the IEEE-ISTO 5001 (Nexus) Consortium. Rich holds a BS in EE
and BA degrees in Computer Science and Spanish from Duke University and has several
debug related patents and patent disclosures.

1. The Need for Debug

Among the engineers doing complex designs, there is never any argument on the need for
more and better tools to address the verification and analysis of complex SoC designs.
Any engineer who has been through the effort of bringing up a new device, has always
found times when having more visibility into the internal operations of the design would
have significantly improved the time and effort involved in debugging problems. This
paper addresses embedded debug based on Nexus 5001, as an approach to adding debug
capabilities to SoC verification and analysis toolkit.

Debug methodologies serve as a compliment to EDA flows, which have evolved a variety
of solutions to address verification needs for pre-silicon design, from diverse simulation
based methodologies to emerging formal and assertion based methods and increasing
levels of system level abstraction. This verification flow largely works under the
assumption that the verification effort is largely done when the design files are handed off
to the foundry for fabrication. Anyone who has been involved in the in-silicon debug
cycle, loosely defined as everything that must be verified and integrated from the time
that silicon is received back from the foundry to the point of being ready for a production
release, knows that this is far from the case. Much as EDA based design flows and their
use have benefited from standardization in tools and interfaces, debug methodologies can
similarly benefit from standardization in implementation and capabilities. Nexus 5001 is
one such approach to debug standardization.

Debug as an issue will increase with complexities, and recent data has indicated that
while design verification times have decreased per given silicon complexity due to the
use of 3rd party IP and advanced EDA, the relative time of in silicon debug has trended to
increase, signaling for the need for better debug tools.

The Nexus 5001 is a debug initiative that is based on the IEEE ISTO 5001 debug
specification. Nexus 5001 was defined in 1999 and its development and proliferation is
managed by the Nexus 5001 Forum™, which evolved as a successor to the Global
Embedded Processor Debug Interface Standard Consortium (GEPDISC), formed to

Source: Novas Software, Inc.

Figure 1 : Cost of Debug in the design process

develop an embedded processor debug interface standard for embedded control
applications. The latest version of the Nexus standard was released in 2003.

2. Nexus 5001 – A Brief Overview

The goal of Nexus 5001 is a general-purpose specification that addresses the diverse
challenges for embedded processor and digital systems debug interfaces. An ever-
increasing range of applications (data communications, automotive powertrain, computer
peripherals, wireless systems and other control applications) have constantly increasing
complexities that require more comprehensive debug features and benefit from more
standardized interfaces. As advances in semiconductor and system design continue, these
types of embedded applications are using higher-performance embedded processors.
Efficient use of these embedded processors requires software and hardware development
tools that can easily access critical processor functionality. The lack of a unifying
standard among the various embedded processors on the market has impeded this
accessibility, preventing tool vendors from creating standard tools with consistent
functionality across a broad range of processors. Nexus 5001 addresses this issue, by
providing a consistent set of auxiliary pin functions, message based transfer protocols and
standard development features to facilitate debug implementations. The standard itself is
open and processor-independent, but the implementations will be user-specific. The rest
of this section provides a basic overview of key Nexus features; discussing the Nexus
signals, messaging resources, registers, and concluding with a discussion of the different
classes of Nexus implementations. Some descriptions are abbreviated in maintaining the
flow of information, however the full release of the Nexus 5001 specification [1] is freely
available for download from the Nexus website. http://www.nexus5001.org/

Figure 2 : Key features in Nexus debug block

2.1 Nexus Signal IO

Nexus 5001 leverages the IEEE 1149.1 standard, which is widely accepted as a test and
debug pin interface. The Nexus standard defines an extensible auxiliary port (AUX) that
may either be used with the IEEE 1149.1(JTAG) port or as a stand-alone development
port. The Nexus standard defines the auxiliary pin functions, transfer protocols and
standard development features to support both 1149.1 and AUX usage. The auxiliary port
provides a wider, higher-bandwidth data transfer conduit and can define both AUX input
and output ports. Auxiliary Out ports are used primarily to provide additional pins in the

AUX In Port

AUX Out Port

JTAG Port

AUX In
FSM

AUX Out
FSM

JTAG TAP
FSM

TCODE & Message
Control/ Formatting

Nexus
Registers

JTAG (IR/DR)
Registers

Debug Control

Debug Data Out

Debug Data In

port for higher trace throughput. It also uses the JTAG port in Nexus-specific ways to
implement various classes of services such as allowing Nexus trace output to be
embedded into JTAG messages.

AUX IO Description of Auxiliary Pins
MCKO Message Clockout (MCKO) is a free-running output clock to tools for timing MDO

and MSEO pin functions. MCKO can be independent of the embedded processor’s
system clock or an embedded processor’s clock pin may be used as a functional
equivalent for MCKO.

MDO[M:0] Message Data Out (MDO[M:0]) are output pin(s) used for sending messages such
as trace export and other read operations, memory substitution accesses, etc.
Depending upon output bandwidth requirements, one, two, four, eight, or more pins
may be implemented.

MSEO[1:0] Message Start/End Out (MSEO [1:0]) are output pins that indicate when a message
on the MDO pins has started, when a variable-length packet has ended, and when
the message has ended. Only one MSEO pin is required, but two pins provide for
more efficient transfers.

EVTO Event Out (EVTO) is an optional output pin to development tools indicating exact
timing for a single breakpoint status indication. Upon a breakpoint occurrence of
the programmed breakpoint source, EVTO is asserted for a minimum of one clock
period of MCKO.

MCKI Message Clockin (MCKI) is a free-running input clock from development tools for

timing MDI and MSEI pin functions. MCKI can be independent of the embedded
processor’s system clock.

MDI[N:0] Message Data In (MDI[N:0]) are inputs used for downloading configuration data,
writing to on chip resources, etc Depending upon input bandwidth requirements,
multiple pins may be implemented.

MSEI[1:0] Message Start/End In (MSEI [1:0]) are inputs that indicate when a message on the
MDI pins has started, when a variable-length packet has ended, and when the
message has ended. Only one MSEI pin is required, but two pin implementations
provide more efficient transfers.

EVTI Event In (EVTI) is an input pin allowing off chip control such as processor halts
(breakpoints) or synchronized Program/Data Messages

RSTI Reset In (RSTI) is a pin for resetting the Nexus port resources.

JTAG
Pins

Description of JTAG (IEEE 1149.1) Pins

TDI Test Data Input (TDI) provides for serial movement of data into the JTAG port.
TDO Test Data Output (TDO) provides for serial movement of data out of the JTAG port.

All target accesses initiated via the JTAG port should be transmitted by the target
via TDO (not via AUX OUT).

TCK Test Clock (TCK) is an input pin that provides the clock for the JTAG port.
TMS Test Mode Select (TMS) input provides access to the JTAG TAP state machine.
TRST Test Reset (TRST) input optionally provides for asynchronous initialization of the

JTAG IEEE 1149.1 controller.
RDY Ready (RDY) output is optionally used to accelerate data accesses through the

JTAG port.

For a full-duplex AUX with IEEE 1149.1 pins, a minimum of two auxiliary pins are
required for compliance [Message Data Out (MDO) and Message Start/End Out
(MSEO)], assuming a system clockout pin can be used for MCKO. EVTI is also
recommended for tool-initiated synchronization. The performance classification,
however, would also be minimal and may meet the transfer bandwidth requirements for
only low-end applications or lower compliance classifications.

Nexus implementations may have one or two Messaging Start/End-Out (MSEI/MSEO)
pins, depending on complexity of the input and output state machines. Two bit messaging
pins allow back-to-back data transfers, speeding delivery of memory data or trace
information.

2.2 Nexus Messaging

Nexus Messages consist of a 6-bit TCODE (Transfer Code), which are Nexus specific
instructions followed by a variable number of packets (the number of packets for each
TCODE is defined in the standard). Messages can be Sync or Non-sync. Sync messages
include full address and Non-sync only include relative address changes. Each message
also contains a SRC field (source ID) to help development tools identify the source of a
particular Nexus message in a multi-processing SoC sharing a single debug port. Packet
types supported include:

Variable: a variable-size packet means the message must contain the packet, but that the
packet’s size may vary from a minimum of 1 bit. When messages are transferred via the
AUX, variable-size packets must end on a port boundary.

Vendor-Fixed: These are used to allow Nexus packets to match characteristics of a
vendor’s device. Vendor-fixed packets may be of zero length (not implemented).

Vendor-Variable: These are used to allow Nexus packets to match characteristics of a
vendor’s device. Vendor-variable packets may be of zero length (not implemented).
When messages are transferred via the AUX, vendor-variable packets must end on a port
boundary. Variable-size packets may have different lengths in messages of the same type,
so MSE signaling protocols are used to determine the end of packet boundaries. Typically
vendor-variable packets are target processor dependent and have a variable size
determined by the processor vendor. These packets are normally reserved for the end of a
Public Message where the vendor may implement additional fields.

 TCODES can be either Public (defined in the Nexus standard) or User defined. Public
TCODES defined in the Nexus standard (IEEE-ISTO 5001-2003) include a range of trace
options as well as other Nexus operations. These include:

• Program Trace:
o Direct Branch
o Indirect Branch
o Indirect Branch With History
o Synchronization
o Resource Full
o Repeat Branch

o Repeat Instruction
o Correlation

• Data Trace:
o Data Write
o Data Read

• Ownership Trace
• Data Acquisition
• Read/Write Access
• Memory Substitution
• Port Replacement
• Watchpoint
• Status

User Defined TCODES can be defined by silicon or IP developers for debug features not
covered in the standard, similarly to User Defined instruction features in JTAG.

2.3 Nexus Registers

Nexus defines a number of recommended registers, which facilitate the integration of
debug support to different cores. Of particular interest for multicore designs, each core or
element on a device may be assigned a different ID in a Device identification (DID)
register to allow discrimination and selection of control and debug operations associated
with a given block or subsystem.

Nexus also defines other recommended registers for debug purposes. These include:
• Client Select Register (CSC)
• Development Control Register (DC)
• Development Status Register (DS)
• User Base Address Register (UBA)
• Read/Write Access Registers (RWA / RWD / RWCS)
• Watchpoint Trigger Registers (WT)
• Data Trace Attribute Registers (minimum of 2) (DTSA / DTEA / DTC)
• Breakpoint/Watchpoint Control Registers (minimum of 2) (BWC)
• Breakpoint/Watchpoint Address/Data Registers (minimum of 2) (BWA/BWD)

2.4 Nexus Implementation Classes

Nexus implementations are divided into four classes, so that given designs can select
features of importance and not be burdened with more advanced features that are not
applicable or efficient to their debug needs. This allows a variety of debug features to be
supported, while at the same time keeping the number and types of different Nexus
implementations that need to be tracked and supported to a manageable number. All
Nexus classes by definition include all of the features in (i.e. are a superset of) the prior
class.

The key features of the different implementation classes are summarized in the following
table.

NEXUS 5001 IMPLEMENTATION CLASSES

Nexus Services Features

Class 1
 Basic run control

 Static debugging
 Breakpoints

 Single step
 Set breakpoints and watchpoints
 Two breakpoints minimum
 Device identification
 Static memory and I/O access

Class 2
 Instruction Trace
 Watchpoints

 Watchpoints
 Ownership Trace
 Program Trace

 All Class 1 features
 Monitor process ownership in real time
 Real-Time program tracing

Class 3
 Data Trace
 Read/write Access

 Data Trace
 Real-time read/write
 Transfers

 All Class 2 features
 Access memory and I/O in real time
 Real-Time data tracing

Class 4
 Memory and Port
 Substitution

 Memory Substitution
 Port Replacement

 All Class 3 features
 Start traces on watchpoint occurrence
 Program execution from Nexus port

The most basic, Class 1, provides features similar to standard JTAG implementations.
However, it sets certain minimum requirements, such as the need for at least two
hardware breakpoints. Debugging halts the chip like normal JTAG products.

Class 2 contains more complex debugging features, with real-time monitoring. It also
adds instruction tracing and more sophisticated watchpoints. Class 2 program trace
feature allows indirect branches to be flagged, making it easier to differentiate indirect
branches from exception handling operations. Additional messages are included for
improved branch tracking. The format of the trace data allows eliminating redundant
addressing information, which thereby increases throughput.

Class 3 allows Data tracing services and also includes the ability to read and write
memory and I/O while the processor continues to run. This makes the system design
more complex but significantly improves the debugging capabilities.

Finally, Class 4 delivers features found in many in-circuit emulators (ICEs), like the
ability to remap memory and I/O ports. This is especially useful when simulating
peripherals. It can also be used to provide other applications running on the testing
system with access to shared memory.

In addition to the four classes, Nexus defines a number of optional features. These
include starting memory substitution upon watchpoint occurrence, monitoring data reads

while the processor runs in real-time, port replacement and port sharing, and the ability to
transmit data values for acquisition.

3. Processor System Debug

Debug features for embedded processors have been recognized from the earliest days of
embedded processing as being an important requirement for processor verification. Since
detailed simulation of processor operations for many applications has historically not
been feasible due to the large number of cycles required for many applications, processor
analysis via emulation and trace of processor operations has been required for verification
and hardware/software integration. Most licensable embedded processors include some
instrumentation features to support debug. While the specifics vary with each processor
type, debug for processor cores typically provide similar debug features:

1. Processor specific run control (start, stop, software and hardware breakpoints, and
single-step run control)

2. Monitoring of hardware and software breakpoints for triggering,

3. Real-time Trace that can include execution (instruction) and/or data trace. Trace
operations can be triggered from conditions such as instruction execution,
memory, or IO operations, address range, or opcode value.

Most processor debug environments can be made Nexus complaint by adding Nexus
wrapper layer around the existing debug blocks. The value of Nexus for processor debug
is that it allows a consistent environment for different processor types to be integrated
using a consistent methodology.

Figure 3 : Processor Trigger & Trace Instrumentation

AUX
Port

Processor
Core(s)

 Instrumentation w/
• Embedded Trace
• Breakpoint Triggers
• Perf. Anal. blocks

 Run
Control

Trace
Memory

JTAG
Port

•Data
•Execution
•Instructions
•Profiling

Debug &
Analysis

Nexus Wrapper

Among the most valuable processor debug features for analyzing operational
performance is execution trace. Trace in general, is a complex debug technology since it
requires either a large buffer or high bandwidth in order to export trace information.
Nexus defines a method of trace compression that takes advantage of the properties
relating to execution of instructions being pre-defined during the programming and
unlike many other types of trace operations, is largely deterministic. With the exceptions
of branching and other instruction that are conditional on data, the sequence of
instructions through a processor is pre-defined during software development.

To make efficient use of memory resources during execution trace, Nexus utilizes a
processor instruction compression technique called Branch Trace Messaging, which
reduces the trace memory required by focusing only on tracing instruction flow
discontinuities (typically branches). Since branches and conditional operations typically
are a small percentage of an overall instruction execution, this can greatly expand the
trace RAM utilization. Trace information can be tightly integrated with debugger
software tools chains, to allow correlation analysis to the source code. Nexus also
supports relative addressing to reduce the number of required address bits transmitted for
normal messages. Certain initialization and exception cases (defined within the standard)
will cause normal trace messages to be “upgraded” to sync type messages in which the
entire address is transmitted. Execution trace can be compressed and later expanded for
integration with code debugger tools. This feature allows debug blocks storing instruction
trace to leverage assumptions in instruction flow in order to conserve trace bandwidth
and increase the number of instructions that can be stored in trace buffers or exported real
time.

For data trace operations, other than the use of relative address transmission (as in
program trace), there is typically no such determinism that can be leveraged for the data
itself to extend the use of trace resources, and as such data trace may require either larger
trace memories for a given trace size or alternate methods of storing trace information.

Even with compression, the time needed for trace export can be significant when relying
only on JTAG TDO for transmitting data. This problem increases proportionally for
multicore designs, where each processor and other block have their own debug
information. The need for improving trace throughput is one of the reasons for
implementing a Nexus Aux port as described previously.

3.1 Other System Debug Considerations

In most designs, processors are integrated with several other subsystems that also may be
included in systems analysis, such as trace operations. Logic blocks included in many
designs include co-processors for specific applications, memory controllers, peripherals
and a host of other functions. Debug of these types of blocks can be supported by on chip
logic analyzers that allow triggering and trace of logic operations, which is often done in
tandem with processor debug operations. [2,3]. One variant of logic analysis important
for many systems is bus level debug. Bus analysis typically takes one of two forms –
signals of interest are traced at the bus interface (as example, an AMBA AHB port or
OCP Socket interface), or from within the selected debug points in the bus fabric [4].

Just as buses operate in conjunction with processors and other IP, bus analysis must
interface to other debug blocks. Typically this is done using cross trigger interfaces to

the other debug blocks for low latency triggering of the processor debug operations based
on status in another core. Likewise processor output signals can be used to allow
triggering of other trace operations to start and stop based on processor operations. These
cross-triggering resources, combined with more global resources, such as time-stamping
of trace information to improve synchronization and alignment of debug data being
brought off chip, allow a more systems oriented focus on debug process, by allowing
debug of subsystems operating in differing clock domains.

3.2 Multicore Nexus Debug Approaches

Nexus implementations can support the concurrent debug of both processor and bus
operations. While each processor or logic/bus element in a design may have a native
debug environment, debug information can be reformatted using Nexus interface
wrappers, that packetize debug information into Nexus messages. These Nexus messages
can then be merged at a Nexus port control level, to allow packets from many debug
sources to be communicated over a common Nexus port. Since each debug block can be
assigned an independent identification (DID) value, debug information can be redirected
once off chip, at the probe interface or as a software operation.

Figure 4 – Basic Nexus Multicore Debug flow

Figure 4 shows this debug data flow, supporting a multicore architecture consisting of 2
processor (or other) cores and a bus port or other bus level debug interface. All blocks
have some native debug or analyzer blocks. The debug information is made into Nexus
compliant messages, including any additional compression; by in line Nexus interface
blocks with the different independent message streams consolidated into a single
combined Nexus stream at the port interface.

One of the issues in debug of multiple core systems is that even with debug information
from different blocks being combined into a single Nexus stream, the control and
synchronization of debug over many different core or subsystems remains largely
independent. Having better control and synchronization of different debug resources can

Processor
Core A

Processor
Core B

Nexus
Port

Control

External
Nexus
Probe

Uncompressed Trace

Trace packet
formatting

Nexus
Message
Stream

Combined
Nexus
stream

Processor
Nexus

Interfaces

Processor
Nexus

Interfaces

Bus Trace
Nexus

Interfaces

Bus
(Debug)

Port

Bus
Trace

Analyzer

 Debug
Port

Debug
Port Chip IO

Interface

significantly improve debug efficiency. MED (Multicore Embedded Debugger) is, as its
name suggests, a debug architecture for multicore systems [5,6]. In addition to the Nexus
interfaces for each of the on chip debug resources, it also includes cross triggering and
system wide timestamping resources to help synchronize and cross-reference debug
operations occurring at different parts of the architecture, allowing different off chip
debugger environments to better comprehend the context and operations occurring in
other parts of a design.

Figure 5 – A Nexus compliant MED environment

Debug subsystems like Nexus introduce important changes in methodologies in the
concept of analyzing the debug requirements during the architectural design phases of a
project. Like many other supporting technologies, analyzing chip needs and debug
strategies needs to be comprehended at early stages in a project. It is much more difficult
to add debug at late stages of a design. Considering the debug resources after everything
else is designed often severely limits the capability and quality of the debug solution.
Different generic debug instrumentation IP is available, but the architecture and interface
intensive nature of hardware debug often requires some customization. Nexus provides a
toolbox and an approach to implementing a debug architecture, which can be customized
to properly address differing architectures and unique analysis considerations. Properly
implemented, a comprehensive debug solution can measurably improve the level of

Core A
(Nexus

compliant)
subsystem

Core B
(Non-Nexus)

subsystem

Nexus
Port

Control

Nexus
Probe
(Off
Chip)

Inst/Data/Addr
 trace

Inst/Data/Addr trace
Compression/Formatting

JTAG

Nexus
Message
streams

Combined
Nexus
Stream

 Core A
 Debugger

SW Debug Port

Bus Monitor
 Gasket

Multicore Embedded Debug
(MED) Nexus environment

 Core B
 Debugger

SW

A
M
B
A
A
H
B
/
O
C
P

 MED Ctrl
 & Bus

Monitor
SW

Synchronized
Run/stop/ Stall control,
breakpoints/tracepoints,
trigger in/out signals

Nexus Port

Core B
to Nexus

Translation

 Embedded
Nexus Bus

 Trace

Core A
to Nexus
Interface

 Synchronized
 Timestamps
 Cross-triggers

testability, maintainability and analysis capabilities throughout the lifecycle of a chip
design, however implementing the right on chip debug solutions also requires an
engineering investment in understanding of how debug tools will be used as well as the
considerations of all the tradeoffs for integrating debug solutions into a design.

4. Nexus Product Implementations

Freescale Semiconductor has architected and implemented Nexus based debug on several
SoCs. These SoCs have serviced many industry-wide markets including automotive,
wireless and networking. Two example SoCs are discussed in this section.

One family of SoCs, initially offered for the automotive powertrain market utilizes the
multi-processing features of Nexus to provide debug visibility to the processor core – a
PowerPC e200z6, the enhanced timer processor units (ETPU), as well as the secondary
peripheral bus.

The MPC5500 family of SoCs support various debug facilities. There are five major
architectural blocks that provide the debug functionality:

• PowerPC e200z6 Nexus1 Module (OnCE) – Class1 compliant debug of the CPU
• PowerPC e200z6 Nexus3 Module – Class3 compliant trace of the CPU
• DMA Nexus Module – Data Trace support for DMA data accesses
• ETPU Nexus – Class3 compliant trace of Enhanced Timer Processor Units
• Nexus Port Controller – Arbitration for Nexus I/O port

Figure 6 : Freescale MPC5500 Multi-Nexus Implementation

The PowerPC e200z6 Nexus modules support all required features as defined in Nexus
Class1 and Class3 as well as the optional features of watchpoint trigger enable of
program/data tracing and burst capability on Nexus initiated read/write accesses.

Nexus Port

PowerPC
e200z6

CPU Core O
nC

E

(Program/Data Trace)

MMU (Ownership Trace)

(Watchpoints)

B
us

 I/
F

Nexus
Port
Controller
(NPC)

eDMAC

JTAG Cntl

JTAG Port

e200z6 Core Complex

e2
00

z6
 N

ex
us

3

Cache
(RD/WR
Access)

DMA
Nexus

E
TP

U
1

E
TP

U
2

ETPU
Nexus

SoC Peripheral Bus

Class1 features such as breakpoint generation, single stepping, and internal resource
access (CPU halted) are handled within the CPU’s JTAG-based static debug OnCE (On
Chip Emulation) block. Watchpoints for Nexus3 are also generated within the OnCE
module. These eight watchpoints (for various programming events) can be used to
trigger trace enable/disable, generate Watchpoint Messages and drive an optional EVTO
output pin.

The DMA Nexus Module supports tracing of data reads and writes on the peripheral bus.

The Nexus Port Controller (NPC) module arbitrates between the various debug modules
for the shared port and controls the port settings (MCKO divide ratio, port-width option).

The second example is from a family of wireless processors nicknamed MXC. The first
generation of these SoCs combines a StarCore SC1400 DSP with an ARM11xx core and
various mixes of peripherals and memory configurations.

The DSP subsystem supports a slightly more enhanced set of debug facilities. The major
architectural blocks consist of:

• SC1400 Nexus1 Module (EOnCE) - Class1 compliant debug of the DSP
• SC1400 Nexus3 Module – Class3 compliant trace of the DSP
• AHB Nexus Module – Data Trace support for AHB data accesses
• Nexus Trace Buffer – Shared internal memory for dumping Nexus trace data
• Nexus Port Controller – Arbitration for Nexus I/O port and Timestamp generator

 Figure 7 : Freescale MXC DSP subsystem and Multi-Nexus Implementation

The SC1400 Nexus modules support all required features as defined in Nexus Class1 and
Class3 as well as the optional features of watchpoint trigger enable of program/data
tracing, and data acquisition messaging for data logging. In addition, the Nexus3 module

Nexus Port

SC1400
DSP Core

E
O

nC
E

P Xa Xb (Data Trace)

MMU

DPU

(Ownership Trace)

(Core Performance
Profiling)

(Program Trace
& Watchpoints)

N
ex

us
 R

eg
is

te
re

d
In

te
rf

ac
e

(N
R

I)

Q2SB IP SkyBlue
Interface

Req/Enable3

Bus I/F

Timestamp

Nexus
Port
Controller
(NPC)AHB

Nexus
JTAG Cntl

JTAG Port A
H

B
 B

us

DSP Platform

SC1400
Nexus3

(Class 3)

4K
Nexus Trace
Buffer (NTB)

A
H

B
 B

us

supports vendor-defined triggering of program/data tracing using the process ID, and
specific messages for reporting core performance profiling information from the SC1400
Debug and Profiling Unit (DPU).

Class1 features such as breakpoint generation, single stepping, and internal resource
access (CPU halted) are handled within the CPU’s JTAG-based static debug block -
EOnCE (Enhanced On Chip Emulation). Watchpoints for Nexus3 are also generated
within the EOnCE module. These seven watchpoints (for various programming events),
can be used to trigger trace enable/disable, generate Watchpoint Messages and can be
connected to a cross triggering module for triggering events in other portions of the SoC.
They also drive an optional EVTO output pin.

The AHB Nexus Module supports tracing of data reads and writes on the peripheral bus
and can generate additional watchpoints based on AHB address and/or data values.
These watchpoints can also be used by a cross triggering module within the SoC.
Additional AHB Nexus modules support data trace on the application side (ARM11) of
the processor as well.

Similar to the MPC5500 family, the Nexus Port Controller (NPC) module arbitrates
between the various debug modules for the shared port. In addition to the arbitration and
port control, the MXC NPC module provides timestamping capability for the debug
system by maintaining an “absolute” timestamp value that the individual Nexus modules
can use within their messages, or for generating their own “relative” timestamp to reduce
bandwidth penalty.

The MXC SoCs also support internal storage of Nexus messages to an internal Nexus
Trace Buffer (NTB) for retrieval at a later time. These messages are sent to AHB
memory within the SoC, which has allocated a secondary function for the storage of trace
information. This information can be read out through the JTAG port (or other memory
access mechanisms) when real-time visibility is not as critical. This allows more trace
data to be stored by reducing bandwidth restrictions associated with sending data off
chip.

Summary:

Nexus has been evolving as an IEEE standard for several years and is seeing increased
use as a debug solution in many different architectures and markets. Using Nexus
provides several advantages to designers, in providing a widely supported infrastructure
and providing a framework for customized solutions. As an "architecture agnostic"
interface, Nexus also provides advantages to tool vendors by reducing development costs
and time to market. Freescale has been an industry leader in developing Nexus based
solutions to support a range of processor cores, and configurations. The Technical
Committee within the IEEE-ISTO 5001 Consortium is continually working to add feature
enhancements to the standard and support for wider range of SoC architectures.

In this paper, we have presented a technical overview of Nexus architecture and the IP
and integration activities required to integrate a Nexus solution into a on chip systems
architecture, including Nexus based debug components and interfaces for debugging the

cores, and subsystem, which include debug of embedded buses. Nexus features can be
added to most debug blocks to allow their integration into a Nexus debug environment.
Nexus environments also allow support of advanced debug features such as complex
triggering, performance analysis, and debug control that are needed for emerging
multicore architectures. Nexus integration of debug resources provides a multi-core
debug environment that allows port level sharing for the debug of multiple cores.
Implementing system level debug features such as cross triggers and timestamping and
the ability to merge Nexus information using a Nexus Port Controller as a single port
interface enables integration of debug information, communications, and arbitration of
multiple Nexus debug blocks, which can have significant benefits in debug of system
level silicon.

Additional information on Nexus, including membership in the Nexus 5001 Forum, is
available at http://www.nexus5001.org/

References:

[1] IEEE-ISTO 5001™-2003, The Nexus 5001™ Forum Standard for a Global
Embedded Processor Debug Interface. http://www.nexus5001.org/standard.html

[2] “Logic Navigator – A vender neutral logic analyzer for FPGA debug” FPGA Journal,

[3] "Processor and System Bus On Chip Instrumentation" Embedded Systems
Conference Spring 2003

[4] “Trace Instrumentation and Architectures for OCP buses” DATE 2005

[5] "Multi-core Embedded Debug Techniques" ARM Developer's Conference Oct. 2004

[6] “Multi-core Embedded Debug for Structured ASIC Systems” DesignCon 2004

References 2-6 are available for download at http://www.fs2.com/news.htm

