
IEEE 5001/Nexus-2010 

integration with 1149.7

Neal Stollon

neals@hdldynamics.com

HDL Dynamics

SoC Solutions



IEEE 5001 Nexus Introduction
• Real Time Debug Instrumentation Architecture and methodology 

standard
– IEEE Standard 5001 - ISTO program – 20+ member companies

– CPU/SoC architecture agnostic standard (15 different architectures to date)

– Default standard use in US Automotive electronics

– Aligned with other standards bodies  - 1149.1. 1149.7, Power.org, OCP-IP

– Nexus Specification is freely available - www.nexus5001.org

– Nexus 5001-20010 specs in work – include support for 1149.7 interfaces

– Support from range of vendors in the tools community

• Nexus provides a Instrumentation toolbox for SoC Debug
– Debug oriented packet messaging (TCODES) and application registers 

– 4 levels of increasing debug functionality

• Embedded run control, Breakpoints , Instruction/data trace 

• Memory and Register configuration and system analysis access

– Defines Multiple Trace and Debug Access Methods and interfaces

• JTAG & Parallel– AUX. Read (Trace) / Write (Configuration) Ports 

• High speed Serdes and 1149.7 – 2010 standard



REFERENCE - Nexus Members



4

5001 Nexus Debug Environment
Packet-Based Messaging

Program Trace

Data Trace

Memory Substitution

Vendor -Defined

Processor Independent signaling 

for data access

Multiple on-chip processor/core 

support

1149 TAP - 2 or 4 wire Protocol and/or packet based 

Messaging for Low bandwidth Control and Status AUX 

Ports High Performance Read/Write Access to  internal 

resources

Logic Analyzer

Auxiliary (AUX)    Trace Debugger, 

Output Performance Analyzer, 

Data Acquisition, 

AUX Input SW Prototyping

Run -Time Debugger, 

Parameter Tuning, 

JTAG TDI/TDO     Calibration

AUX In 

FSM

AUX Out 

FSM

JTAG 

FSM

TCODE & 

Message 

Control/ 

Formatting

Nexus

Registers

JTAG Debug 

Registers

Debug Ctrl 

Debug Data

Out

Debug Data

In
Target

Processor

or 

Subsystem

Debug 

Interface

N

M



Nexus packet TCODE messages

• Nexus Messages consist of 

6 bit TCODE (Transfer Code) followed by 

message specific number of packets

• Packet may be 

• Fixed – constant size as defined by spec

• Variable – min (1 bit) value required 

• Vendor Fixed– constant size per target

• Vendor variable - variable size /message

• Messages can be Sync or Non-sync

• Sync message include full address

• Non-Sync include only relative change

•Each message contains a source packet

• Indicates source IP block of message 

• Allows simple Multi-core Nexus support 

on per message basis 

•Each message contains optional timestamp

Fixed and variable packets required for minimum packet definition

Vendor packets are where target differentiation/value is added



Nexus access under JTAG

IR Nexus_Enable command 

DR Nexus Reserved Register Select

DR Nexus Message to IPMR register

parse message in register

DR Nexus Message to OPMR register

scan out data in register



5001 Nexus integrates IEEE 1149.7 for

Next Generation JTAG

• Custom instrument
integration interfaces

• 2 wire JTAG interface
• Parallel or Serial data
connection

• Improved speed of
debug operations

• Streamlined JTAG
Function control

• Full 1149.1 emulation

Increasing layers of functional enhancements

Based on compliance with 1149.1 operations



1149.7 Feature List

IEEE P1149.7™/D1.14 Draft Standard



Key points

• Differentiating and value added aspects of Nexus 

– TCODE instructions and pre-defined registers –

are decoupled from the Debug Port implementation

• This has historically allowed different access mechanisms 

–JTAG and Parallel Aux ports under a common framework 

• Nexus-2010 adds new access port support 

– SERDES (Aurora protocol)

• Can be treated as very fast AUX port 

– 1149.7 

• Nexus Message can be treated as just another register be 
read/written

• Changes to FSM per 1149.7 are local to the Port 
Implementation



Open Debug Interconnect model
Implementation Layer Typical Tasks Location

1. Physical Port Layer JTAG/Nexus TAP IO, 

chain and debug block wires Target

JTAG/Nexus TAP FSM (connection level)

2. Data Control Layer Debug IP specific Commands/Registers/FSM Target 
User defined JTAG/NEXUS debug instructions

Extended/Optional Debug block registers 

3. Debug Driver Layer Debugger Protocol, clocking (probe specific API) Probe

4. Data Transport Layer APIs debug command sets, run control API Host PC

5. Session Control Layer Device connection setup & parameters, Host/PC

Remote debug server ex. GDBserver,

6. Debug GUI Layer Debugger UI, GDB commands, trace viewers           Host/PC

Set/observe watch/break/trace points, event triggers,

In-the-loop Run control - go/halt/single step

7. Application Layer Eclipse, other IDE, Host/PC

Global (Multi-tool) data management



Open Debug Interconnect model
Implementation Layer Typical Tasks Location

1. Physical Port Layer JTAG/Nexus TAP IO, 

chain and debug block wires Target

JTAG/Nexus TAP FSM (connection level)

2. Data Control Layer Debug IP specific Commands/Registers/FSM Target 
User defined JTAG/NEXUS debug instructions

Extended/Optional Debug block registers 

3. Debug Driver Layer Debugger Protocol, clocking (probe specific API) Probe

1149.7 interface fits in here 

Nexus TCODE architecture fits in here 

Debug tools however will need to support both 



Nexus Feature Classes

Class 2

Program Trace Msgs

Watchpoint Msg

Ownership Trace Msg

Class 1

Static Debug
r/w regs. & mem.

start/stop processor

hw/sw breakpoints

Class 3
Data Trace Msgs

Read / Write Access

Class 4
Memory Substitution

Port Replacement

No direct correlation between 1149.7 T Classes and Nexus Classes 



1149.7 BDX/CDX

IEEE P1149.7™/D1.14 Draft Standard



CDX /BDX

• Background Data Transport (BDX) - utilize idle bandwidth during 

TAP IDLE, PAUSE_DR, and PAUSE_IR for transfers

– Interesting for improving throughput of data intensive trace/calibration 

operations

• Custom Data Transport (CDX) - implement a custom link protocol to 

“on the fly” change direction of the data transfers.

– Interesting since majority of Nexus data intensive transfers are driven 

from target



IEEE 1149.7 JTAG & 5001 Nexus 
• Nexus debug over 2 wire interface 

as required

• Does not impact Nexus TCODE 
protocol or  Multi-Processor/SoC 
debug support

• Nexus Aux In and Out ports extend 
1149.7 bandwidth options for trace, 
calibration, mem access, …

• 1149.7 Star configurations allow 
direct control/data connection for 
Nexus ports in different devices 

– Address cases where synch is 
needed with AUX ports

• Nexus operation is compatible     
with 1149.7 (T0-T5) classes 

– Nexus protocol sits on top of 
1149.7 signaling, 

– Potential improved performance  
using 1149.7 T5 CDX/BDX 
functions

1149.7 + AUX Port

Star Configuration

AUX OUT
AUX IN

N

TCK 
TMS
TDI
TDO

M

N

T
A

P
 2

TCK

TMS

TDI

TDO

AUX IN

AUX OUT

TCK

TDI

TDO

AUX IN

AUX OUT

T
C

K

T
M

S

T
D

I

A
U

X
 I

N

A
U

X
 O

U
T

T
D

I

T
D

O

A
U

X
 I

N

A
U

X
 O

U
T

T
C

K

T
M

S

T
D

I

T
D

O

A
U

X
 IN

A
U

X
 O

U
T

TAP 1

TAP 3



THANK YOU

NEXUS 2010 SPECIFICATON SHOULD 

RELEASE IN 4Q2010 



REFERENCE - Nexus Example



Open Debug Interconnect model
Implementation Layer Typical Tasks Location

1. Physical Port Layer JTAG/Nexus TAP IO, 

chain and debug block wires Target

JTAG/Nexus TAP FSM (connection level)

2. Data Control Layer Debug IP specific Commands/Registers/FSM Target 
User defined JTAG/NEXUS debug instructions

Extended/Optional Debug block registers 

3. Debug Driver Layer Debugger Protocol, clocking (probe specific API) Probe

4. Data Transport Layer APIs debug command sets, run control API Host PC

5. Session Control Layer Device connection setup & parameters, Host/PC

Remote debug server ex. GDBserver,

6. Debug GUI Layer Debugger UI, GDB commands, trace viewers           Host/PC

Set/observe watch/break/trace points, event triggers,

In-the-loop Run control - go/halt/single step

7. Application Layer Eclipse, other IDE, Host/PC

Global (Multi-tool) data management


