

This is a preview copy of the book, “Nexus Revealed” which was never completed.

Nexus Revealed

An Introduction to the IEEE-ISTO 5001 Nexus Debug Standard

By Randy Dees

ew
 Edit

ion

ed
itio

n o
f N

ex
us

ins
 on

ly
fir

st

is
bo

ok
 w

as
Drippin’ Shine Designs

Prev
i

This
 is

 a
pre

vie
w

Rev
eal

ed
 an

d
co

nta

ch
ap

ter
 of

 th
e b

oo
k.

Th

ne
ve

r c
om

ple
ted

.

Nexus Revealed
An Introduction to the IEEE-ISTO 5001 Nexus Debug

Standard
By Randy Dees

Copyright © 2005,2012. All rights reserved. No part of this book may be
reproduced or transmitted in any form, by any means (electronic, photocopying,
recording, or otherwise) without the prior written permission of the publisher.

Published by
Drippin’ Shine Designs

Preview Edition

Trademarks: All brand names and product names used in this
book are trade names, service marks, trademarks, or registered
trademarks of their respective owners.

This publication is provided “as is” without warranty of any kind, either express
or implied, including but not limited to the implied warranties or conditions of
mechantability or fitness for a particular purpose. In no event shall AMT
Publishing be liable for any loss of profits, loss of business, loss of use or data,
interruption of business, or indirect, special, incidental, or consequential damages
of any kind, even if AMT Publishing has advised of the possibility of such
damages arising from any defect or error in this publication.

Cover art and design by Mike Cipolla (mc3designs.com), based on photos by
Randy Dees

Preface
Preface
In 1999 a new standard, the IEEE-ISTO 5001-1999 - informally known as Nexus, was
published as a standard for debugging microcontrollers. The standard was updated in
2003. This book describes the standard in detail and its use and implementation on micro-
controllers from several semiconductor manufacturers.

This first part of the book focuses on the standard itself. The second part of the book looks
at the different implementations on several devices from multiple semiconductor vendors.
The last part of the book looks at actually using Nexus in debugging microcontrollers.

The book is organized as follows:

Part 1 - In Theory

Chapter 1- An Introduction, History, and Overview: The first chapter provides an intro-
duction to the needs for a debug standard, the history of getting to an implemented stan-
dard, and an overview of the standard itself.

Chapter 2 - Introduction to JTAG Debug: This chapter provides an overview of the IEEE
1149.1 standard for integrated circuits and its use as a debug interface.

Chapter 3 - Nexus Features: This chapter focuses on the features available via the Nexus
Standard.
iii

Chapter 4 - Nexus Auxiliary Port Messages and Auxiliary Port Message Protocol: This
chapter delves into details of the Auxiliary Port messages that form the backbone of the
Nexus debug standard.

Chapter 5 - Nexus Recommended Registers: The Nexus Standard provides a recom-
mended set of registers to control the various features of the Nexus Standard. This chapter
details the recommended register and bit descriptions.

Chapter 6 - Nexus Connectors: Due to the varied requirements of systems that use the
Nexus Standard, multiple connector standards are recommended. This chapter describes
all of the different connector options (styles and sizes) that are recommended for different
types of environments.

Part II - In the Real World

Chapter 15 - Working with Nexus: This chapter includes pointers for using Nexus opti-
mally for debugging microcontroller systems.

Chapter 16 - Poor Man’s Trace: Even without advanced and sometimes expensive com-
mercial debuggers that do trace reconstruction and completely decode Nexus messages,
Nexus can be used with a simple logic analyzer to provide some debug capabilities above
what can be done with a static debug interface. This chapter shows how a logic analyzer
can be used to obtain additional information about the system being debugged.

Appendix A - References: Appendix A lists documentation that was either referenced in
the writing of this book or is readily available for additional information on Nexus and
devices that include the Nexus debug interface.

Appendix B - JEDEC Manufacturer Identifiers: The IEEE-ISTO 5001 Nexus Standard
includes an option to use the IEEE 1149.1 (JTAG) interface for control of the Nexus debug
interface, including using the JTAG Device Identification Register for device identifica-
tion. This appendix contains an extract from the JEP106P standard of the manufacturer
identification code used in the JTAG Device Identification Register of semiconductor
manufacturers that are or have been members of the Nexus Consortium.

Appendix C - Debug Protocols: BDM, JTAG - What’s the difference? A short summary of
the different debug protocols from semiconductor manufacturers.
iv Preface

Preface
Appendix D - About the Author: This gives a look at the background and history of the
author, Randy Dees, currently an employee of Freescale Semiconductor, Inc.
v

vi Preface

CHAPTER 1 An Introduction, History,
and Overview
The Early Days of Debug
Debug on the very first microcontrollers consisted of a ROM monitor, a special set of soft-
ware that ran on the target system that allowed the user to modify registers and memory,
set breakpoints, and step though the software being developed. This allowed developers to
monitor the target system. This was good when the code size was small, but as embedded
systems became more complex, so did the software and the software development process.
Emulators were the next evolution in the debug process. Emulators many times used
Logic Analyzers to capture and analyze memory accesses. They could not, however, see
internal operations without special versions of the devices that brought out visibility to
internal resources. In the early 1980’s, microprocessors started adding on-chip memory
and on-chip peripherals creating the first microcontrollers. Emulators relied very heavily
on bond-out “visibility” versions of a device and special devices called Port Replacement
Units (PRU). PRUs allowed devices to substitute an address and data bus for some of the
on-chip peripherals pins. The user could then see the program execution on the memory
bus pins and still be able to use the peripherals whose functions were copied into the exter-
nal PRU device. Motorola Semiconductor1 introduced something they called Background
Debug Mode (BDM) on the MC68300 family. This was expanded to many other families
of Motorola microcontrollers, including the HC12, HCS08, HCS12, MPC500, and the
MPC800 families. BDM allows the microcontroller itself to be connected to an external
computer and used the microcontroller to debug itself. BDM gave access to read and write
memory, execute instructions, start and stop programs, and even set breakpoints. BDM
was supplemented on the MPC500 family with on-chip trace capabilities as well. Trace on
devices running from external memory required only logic analyzers to determine pro-
gram flow but as microcontroller systems became more complex and included internal
memory and cache, trace became more complicated. In these cases, trace required some

1. Freescale Semiconductor became a publicly traded company in July 2004 after more than 50 years as a part
of Motorola, Inc.
An Introduction, History, and Overview 1

An Introduction, History, and Overview
intrusion into the system, including affecting system performance and restricting use of
some of the microcontroller pins. This required an ever increasing number of pins on a 32-
bit MCU to support (32 data pins, 24-32 Address pins, Bus Control pins, and more). It
became clear that as microcontrollers become more complicated, integrating more internal
memory (both program memory and data memory), a new type of debug interface was
needed.

FIGURE 1.1. Evolution of Debug Solutions

ROM Debug
Monitors or

“printf”

Background Debug
Mode (BDM) or

JTAG

Bus Trace with a
Logic Analyzer

Nexus

+

Very Basic Control

Control and Trace

Control and Trace
with real time data,
access, and program
flow reconstruction
2 Chapter 1

History Of Nexus
History Of Nexus

Growing from a white paper written jointly by Motorola
Semiconductor (now Freescale Semiconductor, Inc.) and
Hewlett Packard (now Agilent Technologies), the Nexus
Consortium began back in 1998 as an idea to define an
industry standard debugger interface for embedded micro-
controllers. The original paper referred to this new stan-
dard as GEPDIS (Global Embedded Processor Debug
Interface Systems). Soon other companies were enlisted,
including other semiconductor companies (Hitachi Semi-
conductor - now Renasas, and Siemens - now Infineon
Technologies) and tool vendors, and meetings were held in
the United States, Europe, and Japan to work out the
details of the new standard. Once the first revision of the
standard had been hammered out by the initial group of companies, it was turned over to
the IEEE-ISTO organization to manage the day to day operation of running a standards
consortium where it was approved by the IEEE and became known as the IEEE-ISTO
5001-1999 Nexus Standard. In 2003, the Nexus Standard was updated with additional
enhancements and corrections. The newest revision of the standard is known as the IEEE-
ISTO 5001-2003. The current members of the Nexus Consortium include not just semi-
An Introduction, History, and Overview 3

An Introduction, History, and Overview
conductor companies and tool vendors, but also users of Nexus microcontrollers, and are
shown in Table 1.1.

Over the last few years, some members of the Nexus Consortium have dropped out of the
Consortium for varying reasons, but several made significant contributions. Some dropped

TABLE 1.1 Current Nexus Consortium Members (February 2005)

Semiconductor Manufacturers

Freescale Semiconductor, Inc. ST Microelectronics

Infineon Technologies

Tool Vendors

Ashling Microsystems IAR Systems

dSPACE GmBH iSYSTEM GmBH

ETAS, Inc. Lauterbach

First Silicon Solutions (FS2) Metrowerks

Greenhill’s Samtec

Hitex Development Tools Wind River

User Companies

Ford Motor Company Motorola, Inc.

Delphi Automotive Systems Visteon

General Motors
4 Chapter 1

Why was Nexus Consortium Formed
out of the consortium when annual dues started being charged. Some of these are listed in
Table 1.2.

The annual dues are low (in terms of comparative industry consortiums) with a three tier
fee: semiconductor manufacturers, tool vendors and user companies, and the lowest, asso-
ciate members (reserved for wholly owned subsidiaries of full members).

Why was Nexus Consortium Formed
The Nexus Consortium was formed to define a standard debug interface that could be used
by multiple microcontroller manufacturers. The skyrocketing costs of developing new
tools for every new microcontroller family, combined with the development time required
for new tools drove a need for standardization. A secondary factor was the increase of
System-On-a-Chip microcontrollers that included all of the system memory with the pro-
cessor inside smaller packages that prevented access to the stem address and data bus. Two
specific applications, automotive powertrain controllers and hard disk controllers, rely on
access to parts of processor memory to tune the performance of the engine or hard disk
“on the fly”. Without external memory, which SOCs eliminate, it becomes difficult to do
this calibration work. Some advantages of Nexus:

TABLE 1.2 Past Nexus Consortium Members (January 2005)

Semiconductor Manufacturers

Alphamosaic Ltd. Mitsubishi Semiconductor

Altera National Semiconductor

Cygnal Renases (formerly Hitachi)

Lucent Technologies

Tool Vendors

ADL Nohau

Agilent Technologies (formerly
Hewlett Packard)

Noral

Applied Microsystemsa

a. Now out of business. Some assets were bought by Metrowerks.

PLX

Hiware b

b. Now owned by Metrowerks.

Tektronix

Macraigor Systems Yokogawa
An Introduction, History, and Overview 5

An Introduction, History, and Overview
• Reuse of MCU debug designs saves time and cost of both silicon creation and tool
development.

• Reuse of tool debug hardware for multiple devices and architectures.
• Reduce development time for new processors by using known protocols.

First Public Demonstration
The first public showing of a Nexus microcontroller with tools was at the Embedded Sys-
tems show in Chicago (USA) February 28 - March 2, 2000 with a Hiware2 debugger run-
ning on a Motorola M*Core based Nexus test microcontroller through an interface from
Metrowerks with connections to a logic analyzer from Tektronics. A second showing
occurred in London (England) on May 24-25, 2000.

This demonstration showed that not only was this proposal feasible, it was practical. The
first production Nexus microcontroller to be introduced was the MPC565 from Motorola
Semiconductor (now Freescale Semiconductor). The MPC565 was announced in Detroit
in October 2000 at the bi-annual Convergence Conference.

Processor Support
Nexus is currently supported by microcontrollers from several semiconductor companies
and runs the gamut of applications from automotive powertrain controllers to video pro-
cessors and hard disk controllers. Table 1.3 lists all of the processors that support Nexus at

2. Hiware was later bought by Metrowerks, which is now owned by Freescale Semiconductor.

PC Compatible
Tektronics Logic
Analyzer

Metrowerks
30EBDI

RS232 Probe Cables

Motorola
M•Core M340
Target

Nexus/OnCE

FIGURE 1.2. First Public Demonstration Showing of Nexus
6 Chapter 1

Processor Support
the time of this book publication. Moving into the future, more processors will be added to
this list.

TABLE 1.3 Current Nexus Microcontrollers

Manufacturer Core Type Target Market (Applications)

Alphamosaic DSP SC01, SC02 Video and Multimedia Applica-
tion Processor

Freescale
Semiconductor

PowerPC
RISC RCPU

Core

MPC531, MPC533,
MPC535, MPC561,
MPC562, MPC563,
MPC564, MPC565,

MPC566

Automotive Powertrain

PowerPC
Book E e200

MPC5553, MPC5554 Automotive Powertrain

ARM7 MAC7101, MAC7104,
MAC7111, MAC7112,
MAC7114, MAC7121,
MAC7122, MAC7124,

MAC7134

Automotive Dashboard Appli-
cations

ARM9 Custom Handheld Personal Digital
Assistants

DSP Custom StarCore

eTPU MPC5553, MPC5554,
MCF5232a, MCF5233,
MCF5234, MCF5235

a. The MCF5232, MCF5233, MCF5234, and MCF5235 support the Nexus Auxiliary Output port for
trace and the Nexus development support registers for the eTPU, but are accessed via the Coldfire
Background Debug Port.

Enhanced Timing Processor
Unit

MCore Custom Automotive Body and Control

National
Semiconductor

CompactRISC
CR16C

Wireless Baseband Solutions

ST Microelectronics Super 10
Megacell

ST10R301, ST10R302,
ST10R303, Custom

Custom hard disk controllers

Automotive

MMDSP+ ? ?
An Introduction, History, and Overview 7

An Introduction, History, and Overview
What is Nexus
Nexus is a debug standard that defines different levels of on-chip feature requirements, pin
interfaces, protocols, and even connectors. The standard defines both static and dynamic
debug features. The message protocol is based on packets of information.

Static debug features are the typical run control and stop mode debug features, such as
modifying registers, loading memory, start program execution, and set and use break-
points. In other words, they are features that require the target processor to be stopped for
access and provide a means of stopping the processor via breakpoints set while stopped.

Dynamic features are more advanced. Dynamic features allow access to and real-time
information about a target while it is executing code. These features are required for the
more advanced system-on-a-chip microcontrollers.

Nexus Classes

Nexus provides a standard method of determining the debug capabilities of different
MCUs, by defining four different classes or levels of functionality. Each class has a set of
required features that must be supported and a second set of optional features that are not
required, but could be available. In some cases MCU vendors may add features from a
higher class, but may not support all of the features of the higher class. This is commonly
referred to as a “+” level of features. Class 2+ would mean that the MCU supports all
Class 2 features plus it supports some features that are required for either Class 3 or Class
4, but does not support all features of a higher Class. By defining a standard support level,
it becomes easy to define the capabilities of a given processor.

Nexus Class 1. Nexus Class 1 offers the minimum level of debug capability (basically
static debug) and control of the target system, including run control (starting, stopping,
breakpoints), reading and modification of memory registers. This is basically the same
functionality of the traditional Freescale BDM interface or the common JTAG connec-
8 Chapter 1

Nexus Classes
tions. Class 1 requires that all static debug features be supported as well as some dynamic
features.

In addition, Class 1 functionality requires that some dynamic debug features be supported.

Nexus Class 2. Nexus Class 2 requires that all Class 1 features be supported and adds
support for Watchpoints, Ownership Trace, and Program Trace. In most cases, an Auxil-

TABLE 1.4 Class 1 (and higher) Static Debug Features

Development Feature Class 1 Class 2 Class 3 Class 4

Read/write user registers in debug
mode

√ √ √ √

Read/write user memory in debug
mode

√ √ √ √

Enter a debug mode from reset √ √ √ √

Enter a debug mode from user mode √ √ √ √

Exit a debug mode to user mode √ √ √ √

Single step instruction in user mode
and re-enter debug mode

√ √ √ √

Stop program execution on instruc-
tion/data breakpoint and enter debug
mode (minimum 2 breakpoints)

√ √ √ √

TABLE 1.5 Dynamic Debug Features

Development Feature Class 1 Class 2 Class 3 Class 4

Breakpoint/Watchpoints - The ability to set break-
points or watchpoints.

√α

a. Since Class 1 does not require an Auxiliary port, Watchpoints are signaled via the Event out
(EVTO) pin.

√ √ √

Device ID Message - Device Identification √ √ √ √

√ = Required Feature
An Introduction, History, and Overview 9

An Introduction, History, and Overview
iary port is required, however there is a methodology defined to embed Auxiliary port
messages into a JTAG stream.

Nexus Class 3. Nexus Class 3 requires all Class 2 features and adds the capability of
performing data trace.

Nexus Class 4. Nexus Class 4 requires all Class 3 features and adds some very advanced
features such as memory substitution and the capability of enabling or disabling trace
upon a watchpoint occurrence.

TABLE 1.6 Class 2 (and higher) Dynamic Debug Features

Development Feature Class 1 Class 2 Class 3 Class 4

Watchpoint Message - Ability to send out an event
occurrence when watchpoint matches

— √ √ √

Ownership Trace - Monitor process ownership while
processor runs in real-time

— √ √ √

Program Trace - Monitor program flow while proces-
sor runs in real-time (logical address)

— √ √ √

√ = Required Feature
— = Not required to be supported

TABLE 1.7 Class 3 (and higher) Dynamic Debug Features

Development Feature Class 1 Class 2 Class 3 Class 4

Data Trace (Writes Only) - Monitor data writes while
processor runs in real-time

— — √ √

Read/Write Access - Read/write memory locations
while program runs in real-time

— — √ √

Data Trace - Monitor data reads while processor runs in
real-time

— — O O

Port Replacement/Sharing - LSIO port replacement
and HSIO port sharing

— — O O

Data Acquisition - Transmit data values for acquisition
by tool

— — O O

√ = Required Feature
O = Optional Feature
— = Not required to be supported
10 Chapter 1

Hardware Interfaces
Hardware Interfaces
Microcontrollers have previously had debug interfaces that were not standardized. JTAG,
while a common interface used for debug, is not even standardized. The original proposal
that eventually became the Nexus Standard proposed a more standardized input and output
interface, an Auxiliary Input Port and an Auxiliary Output Port. Unfortunately, by the time
the Nexus consortium was founded, JTAG had gotten a strong toe hold as a standard
debug interface for run control. The Nexus Standard, therefore defines two types of inter-
faces: the Auxiliary Only port that incorporates both an Auxiliary Input Port and the Com-
bined JTAG/Auxiliary Port.

TABLE 1.8 Class 4 Dynamic Debug Features

Development Feature Class 1 Class 2 Class 3 Class 4

Memory Substitution - Program execution (instruc-
tion/data) from Nexus port for reset or exceptions

— — — √

Development Control and Status - Ability to start
ownership, program or data trace upon watchpoint
occurrence

— — — √

Development Control and Status - Ability to start
memory substitution upon watchpoint occurrence or
upon program access of device-specific address

— — — O

√ = Required Feature
O = Optional Feature
— = Not required to be supported
An Introduction, History, and Overview 11

An Introduction, History, and Overview
The Auxiliary Only Port allows for Control, Program and Data Trace, and Read/Write
Access messaging all to be performed using the same type of packet based protocol.

The Combined JTAG/Auxiliary Port allows for JTAG to be used for commands and
responses to commands, including read/write messages, but Program, Data, Ownership,
and Watchpoint Trace Messages are output on the Auxiliary Output port. The combined
JTAG/Aux port also allows for an Event Input pin (EVTI).

3
to

 1
8

3
to

 5

Microcontroller

FIGURE 1.3. Auxiliary (AUX) only Port

AUX In AUX Out

3
to

 1
8

Reference
Signals

3
to

 1
8

0
to

 1

Microcontroller

FIGURE 1.4. Combined JTAG/Auxiliary (AUX) Port

JTAG AUX OutAUX In

4
to

 6

3
to

 1
8

Reference
Signals
12 Chapter 1

APPENDIX D About the Author
The author graduated from the University of Houston in December 1980 where he built
his first single board computer, a 2 MHz Z80 with 1K of SRAM, 2K of ePROM, a hex
keypad, and six 7-segment LEDs. He later expanded it to 6K of SRAM, a serial port con-
nected to a Lear Siegler ADM3a terminal, and a home-brew, self-written, hand assembled
monitor. One of his senior projects was to design and build a successive approximation
Analog to Digital converter from basic glue logic. The hardest part of the project ended up
being not the A-to-D converter, but the requirement to display the result (volts and tenths
of a volt - 0 to 5.0 volts) on Binary Coded Decimal LEDs. This exercise was to show how
much easier it was to use a microcontroller to do the same task using a parallel port inter-
faced to a Digital to Analog Converter and a comparator and perform most of the task in
software. It is much simpler to convert a binary number into decimal with software than it
was with logic.

 Upon graduating from college, he immediately went to work for Motorola Semiconductor
in January of 1981, relocating to Austin, Texas. For his first 18 years at Motorola, he
worked in Product Engineering where he primarily supported new product introductions
of Telecommunication Devices such as 300 band frequency Shift Keying (FSK) modems,
1200 and 2400 differential phase shift keying (DPSK) modems, analog filters, CMOS op-
amps, µ-law and a-law codecs, and two generations of pre-ISDN voice/data transceivers,
including everything from test development, characterization, and specification develop-
ment, to device definitions, applications support, and IC design. Eventually he drifted into
the job of being the technical liaison supporting custom telecommunication devices for a
large, major customer.

After a reorganization, his group was redefined to support custom microcontrollers, which
led to his support of the MPC555 for one of its first OEM customers. During his work on
the MPC555, it became clear that he spent most of his time supporting application devel-
opment, which led to his transfer to the Applications organization for the MPC500 family
of microcontrollers.
13

During the development of the MPC56x devices (the first commercially available MCU’s
that support Nexus) he became involved with the IEEE-ISTO 5001 consortium. Along
with Rich Collins (also of Motorola/Freescale), he co-chaired the Hardware Technical
subcommittee of the 5001/Nexus consortium. It was during this time that the IEEE-ISTO
5001-1999 was updated to the IEEE-ISTO 5001-2003 standard.

When not working at Freescale Semiconductor, Inc., the author lives on a small ranch, in
the middle of freaking nowhere (somewhere near Pedernales Falls State Park), with 7 cats,
and untold numbers of deer, armadillos, skunks, jack rabbits, wild turkeys, raccoons, ring-
tail cats, and foxes. He enjoys digital photography and travelling with his lovely wife,
Mary Jo. This autobiography was written while overlooking the Pacific Ocean in Ixtapa,
Mexico. While most of this book was written out on the ranch, parts were written in less
glamorous locales of Detroit, San Francisco, Ashville (North Carolina), and even a few
pages in a hospital while recovering from minor surgery.
14 Chapter 2

	Nexus Revealed
	CHAPTER 1 An Introduction, History, and Overview
	The Early Days of Debug
	FIGURE 1.1. Evolution of Debug Solutions

	History Of Nexus
	TABLE 1.1 Current Nexus Consortium Members (February 2005)
	TABLE 1.2 Past Nexus Consortium Members (January 2005)

	Why was Nexus Consortium Formed
	First Public Demonstration
	FIGURE 1.2. First Public Demonstration Showing of Nexus

	Processor Support
	TABLE 1.3 Current Nexus Microcontrollers

	What is Nexus
	Nexus Classes
	Nexus Class 1
	TABLE 1.4 Class 1 (and higher) Static Debug Features
	TABLE 1.5 Dynamic Debug Features

	Nexus Class 2
	TABLE 1.6 Class 2 (and higher) Dynamic Debug Features

	Nexus Class 3
	TABLE 1.7 Class 3 (and higher) Dynamic Debug Features

	Nexus Class 4
	TABLE 1.8 Class 4 Dynamic Debug Features
	Hardware Interfaces
	FIGURE 1.3. Auxiliary (AUX) only Port
	FIGURE 1.4. Combined JTAG/Auxiliary (AUX) Port

